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ABSTRACT

In urban areas, vibrations generated by pile dgi\often affect the neighboring
properties vulnerable to ground shaking. Thesegatitms may cause damage to
surrounding structures either by shaking the groambdy causing settlement of the soil
beneath foundations in the proximity of pile drigin It is important to distinguish
between the conditions under which the vibrationié esause damage and those under
which vibrations are tolerable. The numerical saan the analysis of pile driving have
mostly focused on assessing the driving efficieraoyd the bearing capacity of
dynamically loaded piles. A limited number of saglincluded the study of ground
vibrations due to pile driving and its effects afjagent structures. However, the factors
affecting the ground vibrations in soils such aslbnlinear constitutive behavior of soll,
soil-pile interaction and penetration depth of pile have not been clearly identified.

The objective of this research is to implement anarical method to simulate
dynamic loading of a single pile, and study thetdex influencing the stress wave
propagation in the soil surrounding the pile. Thhesis is comprised of two main
analyses: (1) the static analysis of a pile in Whlee phenomenon of static consolidation
is studied, and (2) the dynamic analysis of a mlewhich pile driving and ground
vibrations are studied.

In the static analysis, the load capacity of alsipge is investigated. The results
from the finite element method are compared wittdelNi recognized theoretical
methods. The theoretical methods that are usesbtimate the end bearing capacities
are: (1) General Formula, (2) Vesic’s Method, (3nhku’'s Method, (4) Meyerhof’s
Method, and (5) Coyle & Castello’s Method. Theirastion of skin friction resistance
(shaft capacity) of single piles is performed udimg (1) Alpha method, (2) Beta method,
and (3) Lambda method. Two numerical applicatioms performed to predict the load

capacity of single piles in normally consolidatdalys. It is observed that the model with
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no slippage at the interface predicts almost twikenuch load capacity as the model with
interface. In regards with the end bearing ca;iCoyle & Castello’s method is found

to be most conservative followed by the finite ebetnmethod, the Janbu’s method, the
Meyerhof’'s method, and finally the Vesic’s methdd.respect to skin friction resistance,

the finite element is found to be the most congereanethod, followed by the Beta, the

Lambda, and the Alpha method.

In the dynamic analysis, the amplitudes of grouiarations are investigated
based on the variation of: (1) the soil type, (2 pile embedment length and (3) the
released hammer energy. In the first analysig, tjypes of soils — loose and dense sands
and, soft, medium stiff, and stiff clays — are mede The highest vibration amplitude is
calculated for the loose sand with a peak partielecity (PPV) of 10.0 mm/s followed
by the dense sand with a PPV of around 4.0 mmfmorfg the clay types, the vibrations
are higher for the stiffer clay in the near fieldhich is 9 m (half a pile length) or less
away from the pile. In the second analysis, ttdéferent embedment lengths — full,
half, and quarter pile length — are modeled. Foind that the quarter embedded piles
produce greater vibration amplitudes as compardtiédalf and fully embedded piles.
Larger amplitudes of vibrations are encounteredhenground surface for shorter pile
embedment lengths. In the third analysis, thrdferéint impact forces consisting of
2,000 kN (F), 6,000 kN (3F) and 10,000 kN (5F) applied on the pile head. It is

concluded that increase in hammer energy cause=ase in the peak particle velocities.
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CHAPTER 1
INTRODUCTION

1.1 Background and Motivation

Piles are used to support the foundations of Ingli bridges, and other
structures where the use of shallow foundations ldvdae risky due to excessive
settlement, potential scour effects or future emvinental conditions (Poulos, et al.,
1980). Piles are installed with either an impactaovibratory hammer. Impact pile
driving is an effective method of installing piledo the ground. When implementing
this method, a hammer is dropped on the pile hdadreing the pile into the ground by
repetitive blows until the pile toe reaches their@elsdepth. The installation of a precast
concrete pile with an impact pile driver is showrfFigure 1.1.

The use of piles is a common practice, becauseuaienous reasons, most
importantly: (1) recently developed powerful hamsnaave the capability of installing
piles in a short period; (2) highly efficient hammesignificantly increase the bearing
capacity of driven piles; and (3) dynamic testingtinods are reliable for the estimation
of pile capacities. Although these advantages njales driving a widely accepted
practice, the vibrations generated by pile driviagse disturbance in the neighborhood.

Pile driving generates vibrations in the ground] ancasionally these vibrations
can damage structures or disturb people in theiproxof pile driving. It is necessary
to take pre-cautionary measures prior to pile Itstan to avoid physical damage from
vibrations. The availability of reliable and acatg vibration records prior to the pile
driving operation would give a significant advardgatp the designer to choose an
appropriate type of pile and hammer. The predictibpile driving vibrations with high

precision is thus critical to prevent damage toati@acent structures.
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Figure 1.1 Installation of a precast concrete pyl@n air hammer.

1.2 Problem Statement

The pile driving vibrations in the ground creatsuigs particularly in urban areas
such as unwanted noise, environmental disturbanoe, potential hazard for the
neighboring properties due to the vibrations geteeray pile driving. Many case studies
have shown that ground vibrations due to pile dgwften cause damage to the adjacent
structures that are vulnerable to ground shakikgp5 1998; Dowding, 1999; Woods, et
al., 2004 and; Kim, et al., 2000). The damagetdygle driving occurs either directly or
via settlement of soil beneath foundations in ttexjmity of pile driving operations.

The potential damage to the adjacent structuresbeaprevented by conducting
pre-construction surveys, monitoring and contrglline vibrations on site, and predicting
the anticipated vibrations prior to pile driving qding, 1999). Understanding the

conditions under which those vibrations will caudamage is important to avoid
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excessive vibrations and damage claims. Thus,lal@vent of numerical methods that
predict ground vibrations prior to pile driving loeges essential.

Previous studies on the analysis of pile drivingenmostly focused on assessing
the drivability, the bearing capacity, and drivimdficiency of piles (Smith, 1960;
Mabsout, et al., 1995 and; Liyanapathirana, et200Q1). Only a limited number of
research studies have focused on ground vibratioago pile driving and their effects on
adjacent structures (Ramshaw et al., 1996 and; ivhasset al., 2007 & 2008). Although
the numerical models predicted ground vibrationssient with the experimental data,
they have not taken into account the essential el source parameters such as the
nonlinear constitutive behavior of soil, frictioetiveen the pile and the soil, variation of

pile penetration depth.

,3?’ L Adjacent
v T Hammer structure

1 pile -

Craney
r# Surface waves

i ] 1yttt
L/

/ . .
/ Wave diectior /

Figure 1.2 Generation of surface waves due to itnpéedriving.
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1.3 Objectives and Scope

The scope of this thesis is divided into three majeeas as follows: (1) The
development of coupled soil displacement- pore qumes equations using the finite
element method that includes the derivation oftdéirelement equations for static and
dynamic analysis of soils using the u/p formulati(®) the analysis of static pile capacity
using the finite element method. The commerciaitdi element package ABAQUS is
used for this analysis. The effect of soil-pilection is investigated. The analysis is
conducted with one layered and three layered honmgecohesive soils; (3) the analysis
of dynamically loaded single pile and stress wax@p@gation in cohesive soils. This
part of the research includes simulation of pilvidg with a single hammer blow and
ground vibrations generated by pile driving. Aitenelement model with special
boundary conditions is particularly developed fbistresearch. The variation of
important design parameters such as soil strepgthpenetration depth and the applied
hammer energy are investigated using this model.

There are two main objectives in this study. Tin& bbjective of this research is
to evaluate the static pile capacity formulas fod &earing and skin friction resistance
using the finite method. The conventional pileam&fy formulas are compared with the
finite element method to determine the limitatiofshe formulas for cohesive soils. The
second objective of this research is to study tfiece of soil and vibration source
parameters on the stress wave propagation in doésto impact pile driving to gain a
deeper understanding of how pile driving inducesugd vibrations. The soil and
vibration source parameters studied in this thegs(1) soil strength, (2) pile penetration
depth and (3) the applied hammer energy.

A comprehensive finite element (FE) method is depetl to simulate dynamic
loading of a single pile and stress wave propagatiocohesive soils. A coupled pore
pressure/displacement formulation is used to madélesive soils. The Coulomb’s

contact algorithm is used to include friction betwethe pile and the soil. The peak
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particle velocities on the ground surface are cdegbuwith varying soil and pile
parameters. The amplitude of the surface wavescampared with varying soil
properties, pile penetration depths and hammerga®er Finally, the finite element

results are compared with empirical methods.

1.4 Thesis Organization

This thesis consists of eight chapters. In tha thapter, the use of piles and the
ground vibrations due to pile driving are introdddellowed by the objectives and scope,
and the organization of this thesis. In the secomapter, the studies consisting pile
driving induced ground vibrations, mechanics of e@vopagation in soils, and damage
criteria due to pile driving are reviewed. In thieird chapter, a coupled pore-
pressure/displacement finite element formulatioseldaon Biot's poroelasticity theory is
derived followed by the implementation of this mbde a steady-state soil consolidation
problem. In the fourth chapter, transient analysissoil consolidation problem is
discussed with numerical applications. In thehfifhapter, soil constitutive models that
are used in this study are explained. In the sskpter, static loading of a single pile is
modeled using linear elastic and elastoplastic Wehaf soils. The results are compared
with the results of the empirical methods. In feeenth chapter, dynamic loading of a
single pile is simulated using the finite elemergthod. The amplitudes of ground
vibrations from pile driving are computed in theanand far fields. A parametric study
is conducted based on varying soil properties, pelleetration depth and hammer energy.
Finally, in the eighth chapter, the results of teisidy are discussed along with the

recommendations for future work.
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CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

This chapter reviews the literature for wave pratimm in soils due to impact
pile driving and vibration induced settlements loé tcohesionless soils. It consists of
three main sections followed by a summary sectidrhe first section describes the
fundamentals of ground vibrations and their propagain soils, followed by the
vibration acceptance levels for human perceptiahragarby structures. The literature is
then reviewed for the empirical relations whichraste the amplitudes of the vibrations,
and the most widely used empirical relations aes@nted. In the second section, five
case histories that reveal the vibration inducdteseents from impact pile driving are
described. In the third section, recent numerstatlies within the last decade that are
conducted on the finite element analysis of pilevidg and wave propagation are

described. Finally, the chapter is summarizedthectonclusions are presented.

2.2 Fundamentals of Ground Vibrations

2.2.1 Ground Vibrations Due to Pile Driving
When a pile hammer hits the pile, energy travele/rddhe pile losing some
energy due to friction along the soil-pile intedaand some due to compression by
penetration at the pile tip while the remaining rgiyeof the blow on the pile causes a
stress wave to propagate in the surrounding grouithe amplitude of this energy
depends on many factors such as type of hammex,dlypile and soil classification. As
the bearing capacity of piles is composed of skictibn and end bearing, the wave
generation in pile is similar such that the wavesgenerated by two mechanisms: shear
waves (S-waves) along the shaft and compressivesvar primary waves (P-waves) at

the pile tip as shown in Figure 2.1. Shear wavesgenerated along the pile skin by
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relative motion between the pile and the surrougdioil. As the compressive waves in

the pile travels down the pile, the shear wavepggate out from the pile on a conical

@ Hammer Impact

} Compression waves

wave front as shown in Figure 2.1.

Pile a
in Pile

Ground surface

1
P shi T
11

Energy /
transfer ¢ i I

along pile
: Transmission

* Qi ¢ ¢ i ¢H:’ of shear waves

in soil

Figure 2.1 Generation of compressive and shear swdweng impact pile driving.

The velocities of compressive and shear waves argratlled by the elastic

properties of the media in which they travel. Tveve velocities can be expressed for P-

wave,C, and S-waveCs as follows:

c, = |2 :)2/1 (2.1)
CS = E
P (2.2)

www.manaraa.com



where 4, ¢ are Lamé’s constantg, is the mass density of ground, E is the Young’s
modulus and is the Poisson’s ratio.

The compression wave velocity in the pile is usutdh or more times the shear
wave velocity in the soil, thus the conical waventr emanating from the pile can be
assumed cylindrical. The surface of the cone iswknas the wave front. It is the
leading edge of increase in stress caused by theaation between the skin of the pile
and the soil. The transmission of compression ahdar-waves in the soil are

schematically shown in Figure 2.2.

Hammer Impact

¥ FF TG

Ground surface R- wave
Y Voo
Reflected
wave

Transmission of
compression
Waves in soi

Figure 2.2 Emanating of stress waves from a drpienat the pile tip.
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When the P-wave and S-wave encounter the grourfdcgumart of their energy
is converted to surface waves namely Rayleigh wased part is reflected back as
reflected P-and S-waves. The deformation pattérthe basic body waves and the
Rayleigh wave traveling to the right are shown iguFe 2.3. In the top body, the motion
of the primary waveR-wave) is shown where a minute particle of the matés in the
direction of wave travel. In the middle body, tin@vel of the secondary wav&yave)
is shown where the particle motion is in the plaegoendicular to the direction of wave
travel. In the bottom body, travel of the Rayleighve (surface wave) is shown. The
Rayleigh wave shown in Figure 2.3 is a complex cotion of vertical and horizontal

motion depending on the depth of below the grownthse and Poisson’s ratio.

Wave diectior>

P-wave
()
Body
waves
S-wave
(b)
Rayleighwave
() : Surface wave

1)

41111

< 'Ll_l_ll 1
\ll I y - II!ix I X

Figure 2.3 Three types of body waves traveling aoatinuum media: (a) Primary wave;
(b) Secondary wave and; (c) Rayleigh wave.
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The newly created Rayleigh waves then travel alivegground surface. Thus,
some locations on the ground surface will expeegeticee different types of waves: P-
waves, S-waves and Rayleigh waves. These wavasniitienergy to the ground
surrounding a pile that are potentially damaginghe neighboring structures. The
amplitude of this energy associated with each wade@ends on many factors, including
the pile penetration depth, energy delivered onpile head, uniformity of the ground

and hardness of the ground.

2.2.2 Vibration Damage Criteria

The vibration damage criteria and standards werginatly set by the U.S.
Bureau of Mines based on the studies of numerassarehers including Nichols et al.
(1971), Langefors et al. (1973) and, Edwards et(2080). These researchers have
correlated the peak particle velocities (PPV) ot tground vibrations with the
vibration/blast damage criteria. The amplitudeghafse ground vibrations could either
be as low as barely noticeable to persons or as g damaging the neighboring
structures and/or equipment. The vibration accemdevels were set based on (1)
human perception; (2) structural damage and; (Gipagent sensitivity.

Pile driving induced ground vibrations can distpdrsons and the animals such
as birds and fish that live near vibration sourceBhe human response to transient
vibration is summarized in Table 2.1 after Wiss74P Ground vibrations can cause
damage to the surrounding structures and substaescguch as pipelines depending on
the maximum amplitude of the vibrations. Thereseeeral vibration damage criteria in
the literature. Chae (1978) has proposed buildibgation criteria for the residential
structures based on age and condition as showabteR.2. The impact of construction
vibrations induced by different type of sourcealso assessed by Dowding (1996). The
vibration criteria addressing structural damagestiam the type of the structure is shown

in Table 2.3. The American Association of Statghivay and Transportation Officials
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(AASHTO, 1990) also specify the maximum vibrati@vels for preventing damage to
structures from construction or maintenance aatwit Table 2.4 summarizes the

AASHTO maximum levels.

Table 2.1 Human response to transient vibration

Peak particle velocity, mm/s (in/s) Human Response
51(2.0) Severe

23 (0.9) Strongly perceptible
6 (0.24) Distinctly perceptible
0.9 (0.035) Barely perceptible

Table 2.2 Chae building vibration criteria

Category PPV (Single Blast) | PPV (Repeated Blast)
mm/s (in/s) mm/s (in/s)

Buildings of Substantial Construction 100 (4) 5D (2

Residential, New construction 50 (2) 25 (1)

Residential, Poor Condition 25 (1) 12.5 (0.5)

Residential, Very Poor Condition 12.5 (0.5) -

Table 2.3 Dowding vibration criteria for structures

Category Limiting Peak Particle Velocity
mm/s (in/s)

Industrial Buildings 50 (2)

Residential 12.5 (0.5)

Residential, New construction 25 (1)

Historic Buildings 12.5 (0.5)

Bridges 50 (2)
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Table 2.4 Maximum vibration levels for preventirgnuage

Category Particle Velocity
mm/s (in/s)
Historic sites or other critical locations 25(0.1
Residential buildings, plastered walls 5.0-7.5@.2
Residential buildings in good repair with gypsunattbwalls 10-12.5 (0.4-0.5)
Engineered structures, without plaster 25-37.5-15)

The operation of equipment for research, microedb@its manufacturing,
medical diagnostics, and vibration sensitive higthtdevices can be adversely affected
by vibration. The criteria for designing facilitiés house vibration sensitive equipment
have been developed by the Institute of Environale&ervices. The bandwidth
associated with these criteria is the one-thiréveetband, for which the bandwidth is 23
percent of the center frequency of each band. géneric vibration criteria that relate the
one-third-octave root mean square (rms) velociigis the criterion curves developed by

Gordon (1991) are given in Table 2.5.

Table 2.5 Generic vibration criteria for vibratisensitive facilities

Criterion Curve RMS velocity (f =1 -100Hz) Vibration Sensitivity
um/s in/s)

VC-A 50 (2000) General laboratory sensitivity
VC-B 25 (1000) General laboratory sensitivity
VC-C 12.5 (500) General laboratory sensitivity
VC-D 6 (250) The most sensitive

VC-E 3 (125) Semiconductor & research

facilities
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2.2.3 Empirical Relations for Estimating Vibrations
As the ground waves travel away from the sourceilwfation, the amplitude of
their particle motion attenuates. A portion ofthttenuation is caused by the distribution
of the generated vibration energy on the areaettntinuous wave fronts. This type of
attenuation is called radiation or geometric damgpamd is usually described by the
following equation:

A, = Al[:—zj_ (2.3)

1

WhereA; is the amplitude of vibration at distancgdrom the sourced; the amplitude of
vibration at distance; from the source ang the attenuation rate due to radiation
damping. The values of for different combinations of source location andesare

presented by Kim, et al., (2000) as shown in T2kte

Table 2.6 Values of attenuation coefficient dueatiation damping for various
combinations of source location and type

Source location Source type Induced wave Y
Surface Point Body wave 2.0
Surface wave 0.5
Infinite line Body wave 1.0
Surface wave 0.0
In-depth Point Body wave 1.0
Infinite line Surface wave 0.5

In addition to geometric damping, the ground waatsnuate due to the material
damping of the soil in which they propagate. Theterial damping is described by the
damping ratio, D. The effects of combined geornednd material damping are defined

by the following wave equation after Bornitz (193E)follows:
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A, = Al(:—j e (2.4)
where o is the attenuation coefficient due to material dengp The attenuation
coefficient o for soil materials is reported by Woods and Jed&885) based on the
results of measurements of man-made ground vilistio

The attenuation coefficient due to material dampingdepends on the type of
soil and the frequency of vibration. This typenadterial damping is called frequency-
dependent damping. Woods & Jedele (1985) recometketite values of the attenuation
coefficients based on vibration data they colleatedsites including blasting, dynamic
compaction, pile driving and other sources of uilorags. The recommended values of the
attenuation coefficients for different types oflsa@re given for vibration frequencies of 5
and 50 Hz in Table 2.7.

A simplified analysis of the mechanics of wave @gation in the ground was
also studied by Massarsch, et al. (1995) which detd the following equation for
estimating the values of the attenuation coeffigien

_ 2rfd
Cq

a

(2.5)

whereCg is the propagation velocity of R-waves, is thending ratio of the soil anfl
the frequency of vibration. It is clear in Eq. (Rtbat the value of attenuation coefficient,
a, increases linearly with the frequency of vibratand with the damping ratio of the soil
material whereas it decreases with the valueCgf(i.e. the stiffer soils have low
attenuation rates). The attenuation coefficientan also be computed for any other

frequency, if the value af is known for one frequency from the following etjaa:

a, = al(—] (2.6)

whereq; is a known value at frequentyanda, is an unknown value at frequenfgy
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Table 2.7 Classification of earth materials byratggion coefficients

5

Soil Class | Attenuation Coefficiendy, 1/m (1/ft) | Description of Material
5Hz 50 Hz
I 0.009 - 0.033 0.009 — 0.033 | Weak or soft soils (shovel penetrates
(0.003-0.010) | (0.003 —0.010) | €asily); loose soils, dry or partially
saturated peat and muck, mud, logse
beach or dune sand, recently plowed
ground, soft spongy forest or jungle
floor, organic soils, topsoil
I 0.003 - 0.009 0.033-0.098 | Competent Soils (can dig with shovel):
(0.001 — 0.003) (0.010 — 0.030) | Most sands, sandy clays, silty clays,
gravel, silts, weathered rock
i 0.0003- 0.003 0.003 -0.033 | Hard sails (_cannot dig with shovel,
(0.0001 —0.001) | (0.001 —0.010) | Must use pick to break up): dense
compacted sand, dry consolidated clay,
consolidated glacial till, some exposgd
rock
\Y <0.0003 <0.003 Hard, competent rock (difficult to
(<0.0001) (<0.001) break with hammer); bedrock, freshly
exposed hard rock

The attenuation coefficient;, can also be defined &equency-independerats

noted by Yang (1995). This new attenuation cogdfit, ap, can be defined by writing

Eq. (1.6) in the form of:

2.7)

a :gzﬁ
°f C

whereag is defined in seconds per meter (s/m). Yang (1985 reported the values of
the frequency-independent attenuation rates fds sanging from loose sands and soft

clays to rocks as shown in Table 2.8.
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Table 2.8 Values of the frequency-independent ateon coefficientg, for various soil

groups

Soil Group 0% 10°(s/m)
Rocks (covering layer within 1.5 toShale, limestone 0.385-0.485
2.0m)

Sandstone 0.580-0.775
Hard plastic clays 0.385-0.525
Broke stones of medium density 0.850-1.100
Cobbles
Plastic clays, Coarse sands and 0.965-1.200
gravels of medium density
Soft plastic clays, Silts, Slightly 1.255-1.450
dense, Medium or coarse sands
Silty clays, Silts and saturated fine 1.200-1.300
sands
Recently deposited clays and 1.800-2.050
unsaturated loose sands

Another model for representing the attenuation ojugd waves, known as
pseudo-attenuatiormodel, is presented by Wiss (1981). In his papéiss (1981)

obtained a best fit of field data in equation a fbllowing form:

v=kd™" (2.8)
Wherev is the peak patrticle velocity of wawjs the distance from source to monitoring
location (ft),k is the intercept ad=1 ft (in/s) andn is the slope (log units), or the pseudo-
attenuation rate. To include the effect of the trearis rated energy, Wiss (1981) also

developed an equation so callkxhled-distancequation as follows:

_Joa
v-klz\/EfJ (2.9)

whereE, is the energy of source in consistent units.

Woods and Jedele (1985) gathered field data fromstoaction projects and

developed energy-attenuation curves for each visratnergy source at each case. To
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plot the peak particle velocity versus the scalstiadce, they predicted the attenuation
rates based on the ground class given in Table Based on this empirical study, the
term is defined a®=1.5 representinglass |l soils andn=1.1 representinglass Il
soils. Class | and Class IV type of soils are inctuded in the study, because the soil
types on site was neither in very poor condition inovery good condition. The energy-

attenuation relationship presented by Woods aneld€iio85) is plotted in Figure 2.4.

1000

=
o
o

Widely Accepted Threshold for Damage

I \ f for Damage

=
o

Peak Particle Velocity (mm/s)

1 +
g ticeable —S0il Class Il
Persons.
0.1
0.001 0.01 0.1 1 10 100

Scaled Distancedistancé«/ energ)(m/\/ m-— N)

Figure 2.4 The peak velocity versus scaled distance
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2.3 Case Histories

In the last a few decades, many reports have ieduthe results of ground
vibration studies due to pile driving. Constructicrated vibration surveys and studies
are being conducted frequently, however not altheim are available in the literature.
This section is limited to the review of case hig® that exhibit the vibration induced
settlement due to impact pile driving.

Lacy and Gould (1985) reported the differentiatlegtents of aeration tanks due
to pile driving at a southern Brooklyn site in N&erk City, NY. The tanks were 5 m
high and 80 m wide and were supported by timbezspil The surcharge load on the
ground surface due to the weight of the tanks Wik KPa. The closed-end pipe piles,
which had diameters of 273.1 mm, were driven totltepf about 40 m in the close
proximity to the existing tanks. A Vulcan 08 impadammer was used to drive the piles.
The soil profile on the site consists of organicffom the ground surface to a depth of
10 m, followed by fine to coarse, medium dense s@adhing the end of the boring
depth of 50 m. After about 100 piles were driveettlement had already exceeded 25
mm (2 in). To prevent further settlement, the aenatanks were emptied to reduce the
surcharge load, however, the settlement duringgileng reached 70 mm. As a result,
the installation of piles was halted. The remainpies were replaced with augered cast-
in-place piles. Vibrations were also monitoredngsa seismograph on the site. It was
observed that the vibration amplitudes on the giasurface ranged from 2.5 to 23 mm/s
at all times during pile driving. The attenuatiooefficients were estimated from surface
measurements as 0.02 — 0.05 Triior the upper organic soil layer.

Leathers et al. (1994) reported the densificatibsamd layers during pile driving
at a project located in Boston, MA. The site waghe middle of a block of existing
buildings. Two buildings were located immediatelgjacent to the pile driving area.
The primary soil profile at the site consists ofmof granular fill from the ground

surface, followed by 8 m of silty clay layered a@p tof a 24 m of medium dense sand and
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gravelly sand followed by a rock layer. A totalnmoer of 180 precast 360 x 360 mm
concrete piles with lengths ranging from 29 to 39vere driven on the site. A diesel

hammer with a rated energy of 54 kJ was used fetalimg the piles. The measured
peak particle velocities (PPV) on the ground swfeanged from 6.4 to 15 mm/s. The
settlements observed after pile driving varied leev18 and 54 mm (0.7 and 2.1 in). It
was observed that the settlements measured orrdbedysurface were almost identical
to the ones measured on top of the sand layewadt also noticed that the settlement
occurred only during driving, and did not continaace the driving was complete.

Consequently, the in situ measurements of settlsnetrongly indicated that the

vibration induced settlements only occurred in #@nd layer, and most likely, it

happened due to the densification of the granidatigbes.

Hope and Hiller (2000) performed an extensive stofdyibrations due to impact
pile driving. They compared a number of existingdiction models. They then applied
these results to a site where vibrations were glyemonitored during driving of an H-
section driven by a Banut 700 piling rig, which haswydraulic hammer with a ram
weighing 11 kips. The rated energy of this hamnsenominally 29,000 ft-lbs. They
recorded the peak particle velocities while alsepkeg careful track of the depth of
penetration of the pile. They concluded that, etthhe predictions made by previous
studies did give a reasonable upper bound predidinat did not help to explain the wide
range of vibration measurements observed as piuadgmproceeded. They also noted that
vibrations tended to increase as the stiffnesh@tbil increased.

Ashraf et al. (2002) drove 42 close-ended steed pifes that were 14 inches in
diameter through fine to medium sands. Vibratiortigation measures included pre-
augering the top 20 feet, as well as encasingap@tfeet in a larger diameter steel shell
filled with sand. The piles were driven with a Vaic 01 hammer, which has a rated
energy of 15,000 ft-lbs. The results showed thatrheasured PPVs are scattered out of

the envelopes based on the Bornitz Equation.
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In addition to the discussed cases above, many kdage been investigated for
settlements caused by pile driving vibrations ie thst few decades. Among those are
sites are Leningrad (Dalmatov, et al., 1967), Emddero (Clough & Chameau, 1980),
Lesaka (Picornell & del Monte, 1985), Cedar Creklcf et al., 1986) and Tri-beca
(Lacy et al., 1994). Settlements at the nearbydation soils are recorded from as low
as 6.0 mm to as high as 250 mm. Table 2.9 (mab#feer Kim et al., 1996) summarizes

the measured settlements and pile driving vibragimplitudes recorded at different sites.

Table 2.9 Case histories of vibration-induced sptdnt

Investigated Sites Measured VibratipiMeasured Settlement
Amplitudes (mm)
(mm/s)
Leningrad (Dalmatov, et al., 1967) 2.8 6-11
Embarcadero (Clough & Chameau, 1980 1-5 8-51
Brooklyn, West (Lacy et al., 1985) 25-15.2 61
Brooklyn, South (Lacy et al., 1994) 17.5 70
Back Bay (Leathers, 1994) 6.4 —-15 18 - 54
Lesaka (Picornell & del Monte, 1985) 17.5 250
Cedar Creek (Lacy et al., 1986) 5-10 13-19
Tri-beca (Lacy et al., 1994) 25-18 38 -69

2.4 Numerical Studies

Mabsout et al. (1995) studied the analysis of inpéle driving using the finite
element method. An axisymmetric finite element elod developed for this study,
which takes into account the nonlinear behaviothef soil. The model consists of a
cylindrical closed end concrete pile, which hasaagter of 0.25 m. It was driven into
undrained, normally consolidated clayey soils wislnying pre-bored depths of 6, 12 and
18 m. A linear elastic dynamic formulation wasdi$er the pile. The soil was modeled

using the bounding-surface plasticity model foresitie soils after Kaliakin and Dafalias
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(1989). A single blow, which was represented Ipeaodic forcing function with a peak
force of 2000 kN, is applied on top of the pile.

First, the effect of pre-bored depths of the driy@le was investigated. Top
displacements, velocities and accelerations wenepaoed at pre-bored levels of 6, 12
and 18 m. The displacements varying from 0.05 .60 m were computed. Next, the
change in the solil resistance with varying pre-datepths was presented. While the tip
resistance changed between 80 kN and 100 kN, thk s#sistance increased with the
pre-bored depths varying from 50 kN to 400 kN. f[hthe evolution of the state of
deformation and stress in soil during the coursdriving was investigated. Substantial
increase in pore-water pressure, as much as sestohthe vertical effective stress, was
observed near the pile tip. The pore pressuresaired almost same along the pile shatft.
Finally, the permanent settlement of the pile il dhe shaft and tip resistances were
compared with analytical methods. The study wdg lmited to the dynamic response
of the pile and did not consider the wave propagaith the surrounding soil.

Ramshaw et al. (1998) conducted a finite and itdiglement study using the
finite element package ABAQUS. They modeled ar@idiameter, 70-foot long cast-
in-place concrete pile that was dynamically loastad using a 4.8 kip drop hammer with
a 1.2 m drop height. The pile was instrumentedh witload cell to measure the force
versus time. Vibrations were recorded at 18 andtSdom the pile. To predict the
vibration records, Ramshaw et al. (1998) used angular impact force pulse of 5
seconds in duration. The finite element model wssumed to have two layers with
purely elastic properties. The model generatedpcessive, shear and Rayleigh waves,
and produced an expected ground movement in thial rddection of motion. The
authors reported the match between measured amlicteck values was satisfactory.
However, the peak magnitude of the vibration atest from the pile was over predicted

by a factor of 6 and the signal at 18 ft appeaoduokt overly damped.
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Masoumi et al. (2006) presented a new numericaleiniod the prediction of free
field vibrations due to vibratory and impact pilevthg. The free field vibrations were
calculated using a coupled finite element-bounddeynent (FE-BE) method based on a
subdomain formulation. While the pile was modededthe bounded domain using the
FE method, the soil was modeled as unbounded dousang the BE method. The soll
medium was assumed linear elastic with frequendgpendent material damping. The
small deformation theory was employed for the mod&he pile was embedded in a
horizontally layered soil. Ground vibrations due itnpact pile driving were studied
using a concrete pile with a circular cross-sectiohhe impact of the hammer was
represented by a force function.

The peak particle velocities (PPV) versus the dtafrom the pile were
computed for impact energy of 19.2 kJ at a penetratepth of 2 m, and impact energy
of 3.4 kJ at a penetration depth of 10 m. Theipted vibrations are compared with the
results of field measurements reported by Wiss 1198The PPVs were overestimated
compared with the results of the field measurementswas concluded that during
impact pile driving ground vibrations in the ne&ld were controlled by the shear
waves, whereas the ground vibrations on the fdd fieere controlled by the Rayleigh
(surface) waves. Although, this study focusedrandynamic response of a pile and free
field vibrations, it has several shortcomings saslthe lack of soil-pile friction and the
lack of solil plasticity in the model. In a follomg study published by Masoumi et al.
(2008), the results of in situ measurements dyngmhéctesting from a construction site
in Louvain-la-Neuve, Belgium were compared with tesults from the coupled FE-BE
model. Two piles with diameters of 0.46 m and ednbent lengths of 8.55 m and 6.02
m were selected for dynamic testing on this sifdhe response of these piles and the
resulting free field vibrations during dynamic |loagl were studied with two different
material damping ratios. The vertical velociti¢sldferent distances from the pile head

were computed and compared with the site resitthough the range of the velocities
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had a good agreement, the dissipation of the sivages was not represented accurately.
It was concluded that at high frequencies and atj Idistances from the pile, results

depend on the material damping ratio of the soil.

2.5 Summary and Discussion

In this chapter, the literature is reviewed for ghedies conducted on pile driving
and wave propagation in the ground. In the fiestion, the organization of this chapter
is presented. In the second section, the generatiground vibrations due to impact pile
driving is explained, and the mechanics of waveggagation in soils is described. Then,
vibration acceptance levels for human perceptiom thmeshold damage are discussed.
Next, the empirical relations that are widely usegredict the peak particle velocities of
ground vibrations are presented. In the thirdisectfive case histories regarding the
settlement of granular soils due to pile driving @resented. These case studies have
shown that vibration amplitudes as low as 6.4 mf@/25 in/s) can cause settlement of
adjacent foundation soils due to the densificatbbrthe granular soils. In the fourth
section, recent numerical studies that focus orulgsiimg impact pile driving and wave
propagation are presented. The first study (Mahd®96) has only focused on dynamic
response of a single pile under a single hammaeav.bMyave propagation in soils was not
covered by that study. The second study has cowbeedynamic loading of a pile and
wave propagation in soils. However, since the matédamping coefficients were not
introduced and explained clearly, the free fieldrations were computed five times the
magnitude of the measured amplitudes in the fédd.fien the third study, the proposed
model has simulated a single blow and predictedgtioeind vibrations in the far field.
Although the model predicted the peak particle ediles within a reasonable accuracy in

the close proximity of the pile, it did not predibe vibrations in the far field accurately.
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CHAPTER 3
COUPLED ANALYSIS OF CONSOLIDATION
PROBLEMS USING THE FINITE ELEMENT METHOD

3.1 Introduction

Soils are porous materials with a complex structamsisting of a solid skeleton
of grains in contact with each other and voidedlwith air and/or water or other fluid.
Soil consolidation is the change in the volume pbeous medium with low permeability
due to the drainage of water filling the pores tasponds to the increase in the total
stress. Consolidation settlement occurs duringipi$ion of excess pore water pressure,
and it is controlled by the gradual expulsion otevdrom voids in the soil leading to the
associated compression of the soil skeleton. Tineod this chapter is to get a deeper
understanding of the soil consolidation from anieagring point of view. It describes
the theory of soil consolidation and the derivatadrcoupled solution numerical scheme
using the finite element method in four section3he first section overviews the
literature and gives a comprehensive backgrounthemumerical studies focusing on
the theory of soil consolidation. Second sectioespents the derivation of governing
equations for the consolidation of saturated poroesium for the analysis of saturated
two-phase flow problems in deforming medium. Fbe ffull analysis, this section
explains the averaging process, kinematic equatiosiance equations and constitutive
equations in details. Third section outlines thmanfework for the finite element
formulation of the consolidation problem using twupled displacement/pore pressure
elements. The final section illustrates numereamples for one-dimensional and two-

dimensional consolidation problems.

3.2 Background

The theory of soil consolidation was first introédcby Terzaghi based on the

assumption that the soil skeleton is elastic, thlel Particles or grains constituting the
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soil are bounded together by certain moleculare®rand the voids are filled with water
(Terzaghi, 1925). Terzaghi’s consolidation theisrpased on the principle of effective
stress, which assumes that the portions of therrabstress carried by the porous soil
skeleton and by water filling the voids. The effee stress is the portion of the material
stress that is transmitted through the solid pludghe porous skeleton. The pore fluid
pressure or pore pressure is the portion of themahtstress transmitted through the pore
fluids. Although Terzaghi's consolidation theosya powerful technique for the solution
of a various number of different consolidation pewmbs, it is restricted to only one-
dimensional problems and ignore the dynamic behafisoils.

Biot (1941) was first to extend Terzaghi’'s consatidn theory for the analysis of
three-dimensional consolidation problem. He preposa multi-phase continuum
formulation for saturated porous media where thedfiflow through the solid phase
obeys Darcy’s law. He introduced a solution fonsmidation problems, which is based
on the principle of coupling the equations of paer pressure with the equations of
deformation of the porous solids. In his widelytum theory, the following assumptions
are made: (1) the material is isotropic and lingastic; (2) the small strains theory is
valid; (3) the pore water is incompressible; (4 Wmater may contain air bubbles and; (5)
the water flows through the porous skeleton obeidaccy’s law (Biot 1941). Based on
these assumptions, Biot proposed a solution foe-ii@pendent displacements, pore fluid
pressures, effective stresses and strains for gmubbf consolidation and the settlement
of foundations. He then extended his consoligatieeory to the analysis of porous
anisotropic solids and porous viscoelastic anigitreolids (Biot, 1955; 1956).

Although the consolidation theory of Biot did naiké into account many
important characteristics of soil such as matena geometrical nonlinearities, and path-
dependency of stress-strain relationship, modememigal analysis of soil consolidation

is widely founded on Biot’s Theory. Many reseamshen geophysics, soil and rock
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mechanics have made significant contributions ®exXtBiot's coupled equations for
developing more realistic soil models.

Sandhu and Wilson (1969) used the finite elemerthatkto solve Biot's Theory
as initial boundary value problems. In their waitkey applied variational principles to
the field equations of fluid flow treating the pasomedia as a fully saturated elastic
continuum. Then, they used the finite element wetto derive the weak form of the
governing equations and solved the resulting calptpiations.

Ghaboussi and Wilson (1973) then presented a minttensional finite element
numerical scheme to solve Biot's dynamic field ¢igna for saturated porous elastic
solids. They also incorporated the pore fluid cagspibility in Biot's formulation. Their
solution was applicable for the analysis of dynaswod-structure interaction and wave
propagation problems in saturated porous media.

Zienkiewicz etal. have made significant contributions in extendingt® theory
of consolidation to include liquefaction of granulaaterials and wave propagation in
saturated porous media (Zienkiewiczakt 1976;Zienkiewicz 1980; Zienkiewicz, Wood,
etal. 1984; and Simon, el. 1986). They have incorporated several differemtlinear
constitutive models into their numerical models lsus elastoplastic and hyperbolic
models. They included fluid and solid compresgipilcreep, and void ratio dependent
permeability in their studies (Lewis, Roberts andnkiewicz 1976). Zienkiewicz l.
have also solved dynamic soil-structure interacfiwablems such as analysis of the
Lower San Fernando dam under earthquake (Zienkzeanid Simon, 1984).

Lewis and Schrefler (1987) carried out a comprelenstudy to extend and
modify Biot’'s coupled formulation using the volunfiection concept of the Modern
Porous Media Theory. They developed field equation solid, fluid and air phases for
saturated and partially saturated flow in a defagrporous media. They discussed the
application of the finite element method to the smlidation problems using linear and

non-linear constitutive models.
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3.3 Formulation of Coupled Consolidation Equations

The modern macroscopic porous media theory is abuowaton of the volume
fraction concept and elements of the mixture theatjich was introduced by Green and
Naghdi (1965), and Eringen and Ingram (1965 and’19&Vithin the framework of the
modern porous media theory, a saturated porousumed viewed as an immiscible
mixture of all constituents, so that it can be tedawith the methods of continuum
mechanics. The volume fraction concept contaiesirtkroduction of volume fractions,
which relate the volume elements of the individe@hstituents such as solid, fluid or air
to the bulk volume element. In accordance with Ydume fraction concept, all
geometric and physical quantities, such as motiefgrmation, and stress are defined in
a total control space, which is formed by the persolid. Thus, the geometric and
physical quantities can be interpreted as the stizdl average values of the real
guantities.

In this section, a simplified version of Biot's Tdrg is described combined with
the modern macroscopic porous media theory basethttdern volume fraction concept.
The aim is to develop a numerical scheme for liremarsolidation problems employing
the finite element method. The consolidation peablis governed by macroscopic
balance equations, which are:

(1) Mass balance equation, and

(2) Linear momentum balance equation.

The following assumptions are made for the modes@nted in this chapter:

= The porous medium is saturated. It is composeauhbyftwo phasessolid
and water. Air and other gases are not preseheipaores.

= The porous medium is composedmfompressiblesolid and water phases
at the microscopic level. The averaged densitgawh phase is constant.

The average density of the mixture can vary dubeosolume fraction.
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= Small strainsand rotations are considered for the deformatibrthe
porous medium. Geometric non-linearity is neglécte

= Quasi-static conditiongire considered for the deformation of the porous
medium and the flow of the pore fluid. The solidluid accelerations
are neglected.

= Consolidation occurs und&othermal conditions This means that energy
balance equation is no longer necessary.

In the following subsections, the principle of agng quantities is discussed
first along with the kinematic equations of a mypliase medium. The mass balance and
linear momentum balance equations are derived ngién, the governing equations for
the analysis of a saturated two-phase (solid anid)flporous medium are described.
Next, the constitutive framework with an assumptafnsmall strain elasticity theory
under isothermal and isotropic conditions is diseds Finally, the principle of effective

stress in porous media is explained.

3.3.1 Averaging Principles

The non-homogeneous configuration of soil particteskes it difficult to model
the soil heterogeneity rigorously at the microscopgvel. Thus, in continuum
mechanics, it is preferred to replace the micretmgeneous medium with a macro-
homogeneous one, which macroscopically behaveseirsame manner. This approach
can be accomplished by averaging the geometrigphgsical quantities, such as motion,
deformation and stress defined in a total confpacs. The averaging procedure exhibits
how to link the equations describing the motionalif phases constituting the porous
medium at the microscopic behavior (R.W. Lewis, 899

A multiphase medium can be defined by a total vauand bounded by a
surfacel’ with the constituenét and a partial volume V A representative elementary

volume (REV) which is an averaged volume elementlmadefined adv. The REV is
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considered small enough to be treated as a poittheoheterogeneous medium (K.Z.
Markov, 2000). The position of the center of thHe\Ris defined by a position vectar
The position of the microscopic volume elemeény, is considered as. The volume of
the phase (constituent)within a REV, which is called the average volunenent,dv*

is defined as

r ddv”?

p (3.2)
, raddvia #

11
r,t)=
yo(r.t) {o
wherey” is the phase distribution function. The volumedREV for phaseris defined
as

olx/’(x,t):j;/’(r,t)own
v (3.2)

in which dv,, is the microscopic volume element and the phaaad position vector

are defined as

a=123,..n
r=x+<¢

The area of a REV for phases

da"’(x,t):J.y"(r,t)dqn
v (3.3)

whereda,, is the microscopic area element.
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Figure 3.1 A representative elementary volume pdr@us medium.

The volume fractiong® relate the volume elements of the individual pkase
the bulk volume element, whesedenotes the individual phases (i.e=s: Solid,o=w:

Water). The volume fraction is defined as follows:

o - AV
dv

1
n - j Yo (r t)dy,

(3.4)
with

21" =1
a1 (3.5)

In this thesis, only two phases, solid and watdt,bg considered for the physical
description of the soil skeleton. The solid masd water are denoted by the superscripts
s and w, respectively. The partial volumes of solid andtev are denoted by and

dV", respectively. The volume fractions are defined a
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B
3.6
=V e (3.6)
dv

in which n is the porosity of the soil skeleton aBg is the degree of saturation. The
porosity can also be defined in terms of void ragoas n=e/(1+e) The averaged
guantities are obtained by integrating (averagag)icroscopic quantity over the volume
dv, mass densitydv or the arealaof a REV. The following averaging operators may be
used to average a microscopic field varigle,t) . Vblime average operator at

phases is defined as

1
T(X, 1) =— | {(r,t)y  (r,t)dv, 3.7
8 (x,t) dVdJVZ( W (r.t) (3.7)
The mass average operator at phasse-

[ CDCE 1Y v,

En(x0 [ oty (r. v, &9
The area average operator at phase-
ZHx0) = [ Omy )y, 39)
Vdv

The volume averaged density of each phasg?, can be defined using the
volume average operator as:
P, =n"p° (3.10)

where

p, = macroscopic average density,
n? = volume fraction of elemental volume @ phasez ,an
p% = microscopic mass density.

From this definition, the volume averaged dengity adWo-phase mixture consisting of

solid mass and water can be expressed as follows:
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p=., p,=p+p,=(1-n)p*+nS"p" (3.11)

where p° and p" are intrinsic (microscopic) densities meaning derss at individual
phases, angs andp,, are the partial densities (averaged over the ve)urhthe phases.
The area averaged Cauchy’s stress tensor for andodl phasex is defined as:

6, =n"c" (3.12)

where

macroscopic average Cauchy stress tensor,

a
a

n“ = volume fraction of elemental volume @ phasey ,an

a

c microscopic Cauchy stress tensor.

For a two-phase material averaged Cauchy stressecdafined as:

G = z 6, =6,+6,=(1-n)o° +nS'c" (3.13)

a=s,w
wheres® ande"” denote Cauchy’s stress tensors of the individbhalsps, ands anday,

are the stresses averaged over the surface ofikle R

3.3.2 Kinematic Equations
The kinematics of a multiphase medium i.e. solideflphase, can be described
either by a spatial oEulerian coordinate system denotedayor by alLagrangianor
material coordinate system denoted Xy Assuming the soil skeleton as a material

reference volume, the motion function is defined as

X7 =x7(X7,t) (3.14)
In which x%is the position of each spatial point at timand a function of its replacement
in a chosen reference configurati®fi at the current timg, The deformation gradient
tensor,F* can be defined as

F* =grad x* (3.15)

wheregrad is the gradient operator and defined as
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(3.16)

The velocity and acceleration fields in spatialrcliwate system are as follows

vy =v7(x7,t)

4 = ov*

(3.17)

(3.18)

The material time derivative of any differentiatilenctionf “(x,t) , can be written in

terms of its spatial description whesedenotes the phase of the moving particles as

follows

D1 _df +grad ¥
Dt t

(3.19)

Furthermore, if the material derivative operator ifis another phase, presuming a

prescribed phage then the above equation can be rewritten as

B fa a
DT o7, grad f? W”
Dt t

Subtracting Eq. (3.20) from Eq. (3.21) yields

Bfa a
DT _ot” grad 7 A
Dt t

where

VA =P -y

is the velocity of thgg phase with respect tophase.

3.3.3 Balance Equations

(3.20)

(3.21)

(3.22)

The balance equation for a continuum at the miapisdevel for a quantityy at

any phase: can be written as

6(,01//) +div(pyr)—divi-pb=pG

(3.23)
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in which div is the divergence operatarjs the local value of the velocity field of the
phasejis the flux vectorp is the external supply @f andG is the net production af.

A general average macroscopic balance equatidntasned from the microscopic
balance equation by multiplying it with the distrtton function y*(r,t) and by
integrating this product over the volume elemémtand over the total volunié by using

the previously defined volume averaging operéfor,t) folews:

Jetavav=[| - [26.07 @0y, | av (3.24)

Continuing the averaging process and applying theergence theorem by
(Eringen, et al., 1964) allows us to write the noacopic balance equation in more

concise form as:

2 (o) +dvp V) - divic - o, [+ € (ow)+ F]=p, G (3.2
wherep, is the volume averaged value of mass densitypiiasey, is any conserved
generic quantity?® is the flux vector associated witlh,, b® is the external supply af,,
G% is the net production af,, v° is the mass averaged velocity defined as

Ve :xa(x,t):f”(x,t):ﬁjp(r A (Y v (3.26)

a dv

e*(py) is the mass exchange between different constitukafiised as:

& (op)=—-3 [ ppw—r)I* da, 327)

advaiﬁdaﬂﬂ
and/* is the exchange ap, due to mechanical interactions between the comsiis,

which can be written as

1
|9 =——— n“ [ida_, (3.28)
Ioadvu’iﬂ d;_.:w
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The averaged macroscopic mass balance equatiorcahsdituenta is obtained

from Eq. (3.25) by specifying the following variakl

W'=1 =0, b=0, 1= 0,G"= (3.29)
0 .
5P +div(p,v, )= p,€ 0) (3.30)
with
> 0,e"(p)=0 (3.31)
a=1

wherep,, is the phase-averaged densiy, is the mass-avkradecity andp,e*(p) is
the mass exchange term of the constituent
For solid phase, considering that the mass exchi@ngeon the right hand side of

Eq. (3.30) is zero, the mass balance equation begom

aa'% +div (p.v,)=0 (3.32)

The material derivative of phase-averaged solidsna@msityps can be written using Eq.
(3.20) as follows
DA, _ 95, rad(p. ) (3.33)
Dt ot ° '
Introducing Eg. (3.33) into Eqg. (3.32) and condigrthat the relation between the

gradient operator and divergence operator defised a
div (p,v®) = pdivv®+ grad(p [V °) (3.34)
The averaged macroscopic mass balance equatieolidiphase becomes

1-nD°0° D
p, Dt Dt

+(@-n)divv®=0 (3.35)

For fluid phase, the macroscopic mass balance iequatwritten from Eg. (3.30)

as follows
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ap w w
ST 0"(p,v")=p,€"(p) (3.36)

The material form of the mass balance equatioffidat is written in a similar way to the
solid phase as
D" .
pr +p,divv" = p,e"(p) (3.37)
The material derivative of Eq. (3.37) in the sgbldase can be written using Eq. (3.21)
and Eq. (3.22) as,
D0y .\ ws -
FW+V [divp, + o, grad(v:+v*™) =0 (3.38)

Eq. (3.38) can be expanded as follows

nbDbp + D n, D'S + div (nS'p"v"*)+ ndiw°=0 (3.39)
p" Dt Dt S" Dt S'o"
To eliminate thed®n/Dt term in the above equation, the mass balance iegadbr solids
and fluids can be combined. The combination of(Bd5) and Eq. (3.39) yields
1_n Dsps+i DSIOW+_n DSsW+
p, Dt p" Dt S* Dt S'p"

div (NS p*v"™)+ diw°=0 (3.40)

The Darcy'’s law for fluids can be expressed inftll®wing form

ng V"™ :%(-grad P’ +p mg) (3.41)

where
v"®is the relative velocity defined as
v =y"-vy?® (3.42)

k is the permeability tensor defined as

k 0 0
k=|0 kO (3.43)
0 0 K
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p“is the hydrostatic pressure gl is the dynamic sisgdefined as
u"=p" (3.44)
g is the body force related to the gravity forceBrael as
9={g..9,. 9} (3.45)
Introducing Darcy’s law to Eq. (3.40) and assumthgt S*=1 (fully saturated case)

yields

1_n DSIOS+_n DSpW

p, Dt p" Dt

+div(£w(-grad o) +pr)j +divv®=0 (3.46)
yli

Furthermore, under isothermal conditipike material derivatives can be defined in

terms of hydrostatic pressure and Biot's constiaas

1-n D°p°® _a-n D*(p"S")
o, Dt K Dt

S

-(1-a)divv® (3.47)

LDSIOW_ n DSpW

0" Dt K, Dt

w

(3.48)

whereKs is the bulk modulus of the grain material ag is the bulk modulus of the
fluid. Assuming that the porous media is fullywated §,=1), substituting Eq. (3.47)
and Eq. (3.48), into Eq. (3.46) yields

a-n_ n|op" . [k .
—_— +div| —(—grad p'+ p"g) [+a divv°=0 3.49
{ K ij ot {,UW( ? Pep g)j ( )

Eq. (3.43) is also known as thmntinuity equation It should be noted that for
incompressible grain materialKk=0 ando=1.

The continuity equation can be rewritten for “ingaressible grain material”
(1/Ks<=0) and “compressible fluid”oE1). Assuming that the porous medium is fully

saturated$,=1), the continuity equation takes the final forfn o

——+ div[LW(—grad p+ ,owg)} + divv®* =0 (3.50)
K H
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The linear momentum balance equations at the mampas level are derived
using the general macroscopic balance equatiore vEhniables used in Eq. (3.23) are

defined as follows:

Y=V, =6, b°=g", 19=p°, G°= (3.51)
where v* is the averaged velocityg, is the partial stress tensog® is external

momentum supply related to gravitational effectd gfiis the exchange of momentum
due to mechanical interaction between differentsttuents. Substituting the variables

into Eq. (3.51), the averaged linear momentum eguidbr constituentt can be written

as follows:
div e, +p, (9" -a")+p, | & (V") + p* |=0 (3.52)
with
> p,p7"=0 (3.53)
a=1

For solid phase, Eqg. (3.52) can be written as ¥alo
dive,+p,(g°-a’)+pp°=0 (3.54)
For fluid phase, the linear momentum balance equdtecomes
div aw+pw(gW—aW)+pW[eW(va)+ fJW}=O (3.55)

The linear momentum balance equation for a two-@phasdium is written as follows

dive +pg+p,€"(pv") = p(a+a") (3.56)

in which ¢ andp are the averaged stress tensor and masstyleefined by Eq. (3.11)
and Eqg. (3.13), respectively.
Under quasi-static conditionsthe sum of momentum exchange terms of all

constituents is defined as
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> e (,av") =0 (3.57)

It is also given as a condition of linear momentoaance equations that, the sum
of interaction forces between the constitueaind the other constituents with respect the
volume of the REV is

ipa p” = p,p°+p,p"=0 (3.58)

Thus, neglecting the acceleration terms, the filoan of linear momentum

balance equation at the macroscopic level is

dve+p0g=0 (3.59)

3.3.4 Constitutive Framework
Hooke’s law of linear isotropic elasticity is usas the stress-strain (constitutive)

relationship for the elastic porous case betweerstlessg and straing as follows

¢ = Dg (3.60)

where
c :{axx,ayy,azz,r ol yal Z}: (3.61)
s:{gxx,gyy,szz,ywyyzy Z}: (3.62)

are the vector of stress components, and the vetirain components, respectivele

is the elastic constitutive matrix defined as

1-v v v 0 0 0
v v v 0 0 0
v 1-v 0 0 0
1-v
D, = E 0 0 0 w0 0 |(3.63)
1+v)(1- )
0 0 0 .0 v 0
2
0 0 0 0 0o 1V
L 2 |

whereE is the Young’'s modulus andis the Poisson’s ratio.
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3.3.5 Principle of Effective Stress
The effective stress principle, which was propobgdrerzaghi, is based on the
assumption that the effective stress is equal ettital stress minus the pore water
pressure (Terzaghi, 1943). According to this thietine effective stress controls the
compressibility and the strength of the soil slatet The consolidation of soil associated

with its void ratio depends on effective stresshef soil.

Figure 3.2 Total and effective stresses in satdratedia.

The principle of effective stress was extensivélded by numerous researchers
to extend Terzaghi’'s principle for unsaturated soilThe most noticeable modification
was made by Bishop for saturated and unsaturatkedasofollows:

¢ =(6-6°)+ x(6¢° —c") (3.64)
in which ¢’ is the effective stress,is the total stress!" is the hydrostatic stres&’, is the
air pressure anglis a parameter that depends on the degree oftiatyrstress path, soll
type, etc. (Bishop, 1959). In this thesis, fullgtigated soils are studied and the air
pressure is neglected in the pores. ThereforeBisigop’s expression for the principle

stress tensor can be modified as
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¢ =c+mS"p' (3.65)
wherem={1, 1, 1, O, O, Oiands,v is the degree of saturation.
In this study, the pore water pressure is treateda@sitive and compressive
stresses are treated as negative. The effectieessss can also be expressed for fluid and

solid phases separately. The stress tensor iituidephase is
¢" =n"p"m=ns, pm (3.66)
wheren7” =n§, is the volume fraction. The stress tensthé solid phase is
¢’ =(1-n)(c'°—mp°®) (3.67)
with the pressure in the solid phase and the effestress tensor defined as
p’=S"p" and ¢ = (x ny'® (3.68)
Substituting Eq. (3.68) into Eq. (3.67), the efieetstress for the solid phase yields

¢’ =(1-n)(¢'"°*-mS, p")
=¢'+m(@-n)s, p'

The total stresg acting on a unit area of a two-phase (solid andlfimedium defined

(3.69)

by Eqg. (3.13) can be verified adding up the staefmitions for fluid and solid phases
given by Equations (3.66) and (3.67) as follows

6=¢"+tc"
=¢'+m@-n)s, P'+mng (3.70)
=o' +ms, p'

3.4 Finite Element Framework

The linear momentum and mass flow balance equatawaspresented in this
section under the assumptions of quasi-static tiondi and small-strain theory. Then,
the initial and boundary conditions for the govaghequations are prescribed. Following
that, the spatial discretization of the governingiaions is carried out by defining the

weak form of the governing equations using weightesidual-Galerkin approximations
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procedure. Finally, the discretization in time domis performed using-method and a

solution for the linear elastic case is presented.

3.4.1 Governing Equations
The small strains theory, which assumes the smslatements and small strains
in a prescribed domain, is adopted for developing governing equations of the
consolidation problem. The strains,of the soil skeleton are defined in terms of

displacements as follows:

1
==| grad u+(gradu)" 3.71
e=-[ grad u+(gradu)'| (3.71)

where
u={uwvw' (3.72)
0 0 0

rad=| —,—,— 3.73
J (ax oy az] (3.73)

are the displacement field and the gradient opgregspectively.

The balance equations of a two-phase (solid and)fideforming porous medium
are derived in the previous section under quasiestéand isothermal conditions. The
balance equations are defined as follows.

(1) Linear momentum balance equation:

0" 6+pg=0 (3.74)

(2) Mass balance equation:

i@ + div(LW(—grad p+ pr)j + divw®=0
K, ot H (3.75)
in which
Y :{ax’ ay’ az’ Z-xy' sz r y}T (376)
p=(1-n)p°+n§,p" (3.77)
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T
g :{gx .0, ,gz} (3.78)
are the phase-averaged Cauchy’s stress tensophtse-averaged mass density of the

mixture and; a vector of applied body forces, retipely.0" is the differential operator
defined as

9 9 o 9 9
0x dy 0z
7=l0 2 o 2 o2
oy 0X 0z
0 O 9 0 9 9

0z ox ay

(3.79)
Based on the small strains theory, the last terth@fmass balance equation can
be defined as

. o€ . du )
dvvi=m'—=m'div—=m"¢§

ot ’ (3.80)
where g, is the strain rate defined by
£, ={60 8y Vg Vb (3.81)
andm is a vector defined as
m={111000 (3.82)
Thus, the continuity equation becomes
Kiwg+div(%(—grad p+,oWg)J+ me=0 (3.83)

3.4.2 Initial and Boundary Conditions

It is necessary to define the initial and boundaogditions for a boundary value

problem. The initial conditions specify the fulield of displacements and water

pressures at time0 as follows

u=u, p=p, inQand o (3.84)
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where Q is the domain of interest and is its boundary. The imposed boundary

conditions displacements and water pressures dofl@ss:

© (3.85)

u=a onl,
p=p onl,
The traction boundary condition for stresses is

I'e=t onrl, (3.86)

where the matrix is related to the unit normal vector= {nx,ny,nz}T by

o

x

g
n, 0

0 n,
n, 0 (3.87)

n n

X

N

Yy

> O 5 O OS5

o

4 X

Finally, the flux boundary condition for water fragg. (3.41) is

.
{%(—grad p+pr)} (h=q onl, (3.88)

whereq is the imposed mass flux normal to the bounddtguations (3.85) and (3.86)

are natural boundary conditions for the correspagptlialance equations.

3.4.3 Weak Form and Galerkin Approximations
The weak form of the governing equations can beaéal by multiplying the mass
balance and linear momentum equations by weighfingctions and integrate the
combined equation over its defined domain. Thedinmomentum balance equations

can be written in an explicit form as follows:

www.manaraa.com



45

T
e e I (3.89)

Similarly, the mass balance equation is expregséuei form of

2 2
X X
W ot p U y (3.90)

Kk 92 w0 L
(0B 2 (e ) w0

Since there are four equations, four weighting fioms are needed to construct the weak
form of the governing equations. Denoting the \Wweigy functions byu,v,w ang |,
multiplying each equation by its weighting functjantegrating over its domain, and
adding all four terms gives us the weighted redidadollows:

I 60'X+c9rxy+arxz+pgX UdQ+J' aay+aryX+aryz+pgy v D
s\l ox 0y 0z L0y 0x 0z

or
+ J‘(aUZ +6TZX+ zy+pgzjw do

s\ 0z 0x 0y

nop 1(, o*p., 8’°p,, 8%p
+ || ———-—1Kk + +
J.{KW ot ,uw( * ox? kyay2 kzaz2

Q

(3.91)

o"(, og dg, . dg Y
+ |k ==X+ + Zl+(e +& +& dQ=0
,uw(xax kyay kzaz (X Y z)p

Using the Green-Gauss theorem on each of the stegsstive, pressure derivative and

body force derivative terms, the following expressis obtained.
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H(axnx+rxyny+rxznz)n+(ryxnx+a NHT V(7 T peo p)z\}/ v

ou Jou ou ov ov ov
- Oy oty -t Oy +T o +T
ox Yoy 0z Yoy Tox Yoz

J
Q
+(Uzg—v;v+rzxg—vl+rzygvﬁ+p( gu+gy+ton| @
J
r

_ 3 " (3.92)
+ { i( —on,+ ky pnz]+p—w(kxgxnx+kygyn,+ kzgzn)‘%
Lot H
_flpnop_1(, 0pdop, , 0pdp | 0PI P
ﬂpKW t W(I&axaxﬂgayaszazazj

U
kLo P g gzj+(f'x+éy+é)‘% @ =0
V4

Incorporating the boundary conditions defined by E286) and Eg. (3.88) into Eq.

(3.92), the final weak form becomes

ou ou ou av av ov
(| O+t ¥ T |F| O+ T 4T
0Xx ay 0z oy 0 X 0z

ow ow ow
to,—+1,—+7,— |+ u+gyv+gw| d
( 2oy o, zyayj plop+gy+ogm]

e

1(,9p0p, , 0pdp , 0pdp

-—— ——+ k—— 3.93
u" (I&axax lSayay kzazaz ( )
_IT)
* Ox

ap R
gv gy kZa_z gj+(5x+5y+gz) p} dQ

"l

= [(ta+tv+t,w cr+jr P g
ru P

where the applied surface tractions are

tx = anx + Txyny+ Z-><J‘|z

t=r,n+on+r.n, (3.94)

tx :sznx+rzyny+0-znz

and the outward flow per unit area is
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0
q=-p—{k{ P_p ngm l@( -p" gyJ n+ ls( -p" gzjrz} (3.95)
)7 0x
If the weighting functions are interpreted as \aitdisplacements and their derivatives as

virtual strain:

ou__ o0V __ ow_ _
=&, =€ LS. T ¢z
ox ay ’ z
(3.96)
ou 0V _ 6V+0VV___ Jou ow__

6y x 5z ay_yﬂ’ 3z ax  *

Substituting these in the weak form and rearranthiegerms yields

[(o&+vog,+oF 17,41 ) #7 ¥ )dQ-[p(g T+ g+ g Y @
Q

Q

+ﬂﬁ£393{Kﬂ@m&ﬂﬁsz@ﬂ

0X 0X oyoy 020z
w a_ (3.97)
p R
+,u_( _gx ky a_ gzj+(€x+£y+€) F%| @
= [(tu+t,v+tw d‘+jr p-Lar
r PP
The matrix form of the virtual terms used in th@ab equations are written as
u={u,v,w’
E}E@M%@ﬂi&i_ (3.98)
ox 0y 0z ay 0x0z dyodz o
E = @ @ @
P lox dy 0z
Thus, the final weak form becomes:
[|{&To-u" g} +1p- D+ETL(-grad prp"g)+ N éf | @
| LU K p
v v (3.99)

where
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t={t, t,t}" (3.100)

is the surface traction vector, and

]
k
q{pw—(grad p—pg)} [h=v'h (3.101)

W

is the prescribed outward flow per unit area amﬁ{nx N, ,nZ}T a igector of direction

cosines for the unit normal fa

3.4.4 Finite Element Equations
A finite element solution to Eq. 3.99 can be olkgdirusing shape functions to
describe the variation of the displacements an@ maater pressures for each element.

For an element with nodes, the displacement field at any internal psiissumed to be

of the form
. n
a=0=> N,u =N,u (3.102)
i
with an explicit form
0, ]
Vl
Wl
u N, 0 ON, OO ..N, OO
d={v|={ 0 N, O ON, O .. ON, Of |=Nu (3.103)
W 0 O N, O 0 N, 0 O0N,|
Vn
_Wn_
whereN, is a matrix of shape functions anid \V;, W, U,, \,, W,...  are the nodgteks of

freedom. Similarly, the field of pore pressures &m element with pore pressure

freedoms am nodes is assumed to be of the form

p=P=3 N, n =N, (3.10)
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with an explicit form

P,
P=[Nyu Ny, N ] =N (3.105)

L Prm ]

WhereNTp is a matrix of shape functions ani$ a vector of nodal pore pressures. Thus,

the complete set of assumed solution is written as

m D u NOM (3.106)

The strains from the assumed displacements defisegd=B,u=0N _u are written as

- 1[u
Ny 0 AL ES of
ox 0Xx v,
o MNu g o0 M 0| w
oy oy !
0 0 al;”l 0 0 aglun
z z
= = 3.107
TNy N, N, N, || B,u (3.107)
oy ax 9y ax
N, o Ny AN, o Nl
0z 0X 0z 0x
N, Ny o AN, N, (Y%
| 0z oy 0z ay__Wn_

Similarly, the strains from the assumed pore pressdefined ag, =B p= ON ,p are

written as
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[ON; ON_, oN_ 1| Py
X ax . ax || P
g, = ONp Ny 0N,y =B.p (3.108)
dy  dy oy P
ON, ON, GIN
L0z 0z 7 az | p.]

The total stress tensor is split into effectivees$r and pore pressure parts using the

principle of effective stresses as=¢+mp , and definedtegral form as
[&7e' da=| 7o @ 4 7 mp @ (3.109)
The effective stress can be expressed using thetitdive relationship as
¢=Dg,=DBU (3.110)
Similarly, the strain rate can be defined as
¢, =B (3.111)

Substituting the assumed solutions above into #sakviorm yields
J'{{EUT (DeBuu —mNTpp) ' ,og}
Q

+{TJTKLNpD+EpTﬂL(Bpp—pr)+ meTBUuH dQ (3.112)

:jrgrﬂt dr+jrﬂb% a

The sets of weighting functions are the columnshef matrix of the assumed solution

functions defined as follows:

B, O
u) (N, O
NP and & |-|B, O (3.113)
0 N

p
Substituting the weighting functions into the asednsolution as expressed by Eq.

(3.113) yields

T T — T T
[ BIDBud2~[ BmMN pd2 =[ NlpgdQ+[ NTtdr (3.114)
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T N ; TR T K -
jQNpK—Npp+jQNpm B .U dQ +jQBpﬂ—Bpp @ =
" (3.115)
q"
[ Np =5 T BT—,og o)
v P " U,
These equations express the linear momentum batarteontinuity equations for each

element. They can be written in the compact foallows:

K. u-Qp=f" (3.116)
Q'u+Sp+K_ p =f* (3.117)
in which

= [ BIDB . (3.118)
Q= jQ BImN ,dQ (3.119)
s=[ NTi N, dQ (3.120)

k
KC:j Bl —B,dQ (3.121)

Q luW

— T T

_jQNupg olQ+jr Nt o (3.122)
=] B;ﬂprg do+, N;% a (3.123)

The final form of coupled set of equations can éfned in matrix form as

5 S A e

whereKp, is the elemental elastic stiffness matr@,is the coupling matrixS is the
compressibility matrixK. is the permeability (flow) matrixX,, is the elemental vector of

external forces, anf is the fluid supply vector.
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It is apparent that the final form of coupled equad is not symmetric. To make
Eq. (3.124) symmetric, the first set of equatiandifferentiated with respect to time and

multiplied by -1 in the following form:

-K ‘ 0 O —fu
r VML o) (3.125)
Q" SJp [0 K |[p fP
3.4.5 Discretization in Time Domain
To solve theinitial value problem defined by Eq. (3.12fr elastic solids with

constant permeabilifthe finite differences method is used to coniausystem of linear

first order differential equations of the form

Bx+ Cx = F() (3.126)
where
B:[_KT”‘ Q} and c=[O 0} (3.127)
Q" S 0 K,

are matrices of constants(t) is a time dependent forcing function defined by
—fu
F(t) :{ o } (3.128)
and x={u g withx =dx/dt. The discretization in time domain for solving.Eq
(3.126) is carried out by th@&scheme which approximates the mean valug af two

consecutive time stegg andt,,; by the weighted average ®f The scheme is defined
by

X -X
_nzt n=gx  +(1-6)x, 0<6<1 (3.129)

whereAt = t,,; — t,, and the suffixn represents the value of the quantity at titpe

The weightd refers to some well-known schemes, which are
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0, Forward difference "explicistheme,
6=11, Backward difference "implitischeme (3.130)
1/2, Crank-Nicholson scheme.

The #-method is at least first order accurate and, pieyiéd > 0.5, is
unconditionally stable. The unconditional stapilis an essential characteristic for an
efficient consolidation scheme since it is oftewassary to integrate over long periods
using large time steps. Whéns set zero, it is called the forward differenceexplicit”
scheme. Although the “explicit” scheme is simplegquires excessive number of steps
because it is only stable wheé is small. Choosing a value 6f= 1 gives the well-
known backward Euler “fully implicit” scheme. Thi&cheme is first order accurate;
unconditionally stable and oscillation free (Wo&890). For the special caseét 0.5,
the -method is second order accurate and corresporitig tabiquitous Crank-Nicolson
scheme. This scheme can lead to oscillatory eshtiwever the oscillations can be
smoothed out by using the fully implicit versiontlwt = 1. In this thesis, the Crank-
Nicolson scheme will be used in the solution of ¢tbepled transient problems. For the
nth time step, Eq. (3.126) may be expressed in tvsecutive time steps as follows

Bx +Cx, =F, (3.131)

BX.it CXpy = Fry (3.132)

Using thed-scheme, the sum of Equations (3.131) and (3.1&2)e expressed as

[B + At Clx,,+[-B + 1 -ONtC] x, = AOF,, +At(L -6 )F, (3.133)
The process assumes thgfat time tyis known. For the case of an elastic soil with
constant permeability, the matricBsand Care independent of and Eq. (3.133) defines
a system of linear equations which can be solved{o Assuming the application ¢f

method to the set of coupled consolidation equatidefined by Eq. (3.125) yields the

final form of the complete set of equations asofol:
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{_Q m } {U} _[ Q m } {U}
T AtOK, +S T (1-)AK +S
2w (Pl Lo +S L, P, (3.134)
t

- {‘f } " —(&)At{_f }
fP fP
n+l n
3.4.6 Solution of Elastic Consolidation Problems
It is convenient to apply the external loads inceatally to a given system to allow
plastic stress redistribution to equilibrate atresiep. This method is especially desirable
for the solution of non-linear systems that will #ealt in the next chapters. For the
linear-elastic case, the same approach may be edlofdthe total forcéf“} applied on

the system in the incremental form using #h@ethod can be defined as

AU =f  —f =At[F . +(1-6F ], <f< (3.135)

n+1

Substituting Eq. (3.135) into Eq. (3.134) and nefjtg the compressibility matrix and

the fluid supply vector, so th&:= 0 andf? = 0 results in

-K _ u _fu
m QU Ual ) T, (3.136)
Q MOK,_||Pry—P, MOK P,

Eq. (3.136) can be expressed using the increméntal of the applied external forces

defined by Eq. (3.135) as follows

{—KTm Q HAU}:_{ Af* } (3.137)
Q AtK_||Ap AtKp,

with the resulting changes in displacemet, and excess pore pressurdsp, in the

incremental form defined as

Au=u,, -u, =At[6u.,, +(1-6)u], ko< . (3.138)

n+1

Ap: pn+1 - pn = At [Qpn+1+(1_0) pn]’ OS HS ] (3139)
The Eq. (3.137) is the incremental recurrence fofnthe coupled set of consolidation
equations as derived by (Sandhu, et al., 1969)(@niffiths, 1994). The left hand side

element matrix of Eq. (3.137) is formed by its ddnsnt matrices and is symmetric.
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The right hand side vector consists of load increisyA f} and fluid loads are given by
Atk.p, . The fluid term is computed without any need feseanbly using an element by
element product approach. At each time step, dbp#grvariables are updated using Egs.
(3.138) and (3.139) as follows

Unea = Uy + A (3.140)

Pra = Py HAP
The assembly approach is chosen for the solutiothef coupled equations. This
approach involves the setting up the coupled glsbtihess matrix on the left hand side
of these equations, followed by an update of th@abtes from Eq. (3.140). Considering
the constant element properties and the time ateghe left hand side needs to be
factorized only once. The remainder of the sohtiavhich involves the vector
multiplication on the right hand side, is followbg forward and backward substitution.

A numerical example using the linear-elastic forhtoupled equations is illustrated in

the next section.

3.5 Numerical Applications

3.5.1 One-Dimensional Consolidation Problem

This example illustrates the one-dimensional plsinain consolidation analysis
of a soil column using 8/4/p quadrilateral elements as shown in Figure 3.3.e Th
elements are comprised of rectangular quadrilatdoaldisplacements coupled to 4-node
rectangular quadrilaterals for pressures. Degréégedom are numbered in the order
and p, denoting displacements and excess pore pressespectively. The material
chosen for the example is a plain strain odomegiecimen. The finite element model
consists of four 8-node poro-elastic solid elemastshown in Figure 3.3. The material
is elastic and homogeneous. The material progertieat include the isotropic
permeability coefficienk, modulus of elasticitf, and the Poisson’s ratioare given in

Table 3.1.

www.manaraa.com



56

y
A
7 8
6 6
= @
4 4 Actual
2 o element 5
Master
element
1
v 1. o .3
2 3
<+ > » X
2 (0,0)

Figure 3.3 Eight-node quadrilateral master anda&lements.

The boundary conditions for the model are as failotlie bottom is fixed and the
sides are bounded by smooth rollers. No drainagdlowed through the base and the
sides. The top of the specimen is drained ancestég to a ramp loading of the form as
shown in Figure 3.4. The initial time value t5-0.5 seconds where the ramp load
reaches its maximum gE1kN/nmi . The finite element companat including
complete the spatial and time discretization areiezh out by the commercial computer
program namedMathematica® The element equations are developed using the
interpolation functions with the plane strain fodation as follows

Ev(e +¢,)
g, :yyz:yZX:O:aZ:m; r,~0 1,7( (3.141)

The finite element formulation for the eight-nodespliacement/pore pressure
element is derived using the interpolation functionThe interpolation functions for

displacements are as follows:
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L1y
%(—1+t)(1— §+t+ s)

- ar9)-14)
%(1+ S)(L+ t)(- 1+ s+ 1)
-2 (1)

:11(—1+ S)(1+ s— 1+ 1)

(91 E)

The interpolation functions for pressure are a®vad:

%(1— s)(1-1)

%(s+1)(1— f)

zZ
=
1l

%(s+1)(t+1)

%a—@a+n

The element strain vector is defined as follows:

@
0Xx
@

oy

ou ov
Pt B

oy 0x

N
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(3.142)

(3.143)
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u, |
ON N N ) 104
ul 0 u2 O u7 0 Nu8 0 u
0x 0x 0Xx 0X 2
V.
=|0 —62';1 0 ag‘;z . 0 021;7 oa(;\';s *L=B"u  (3.144)
aNul aNul aNu2 aNu2 aNu? aNu7 aNu8 aNuS
dy o9x a9y dox  dy ox dy ox |,
8
VB
The assumed solution is as follows:

Vl

u2

V.

u) (N, 0 N, 0 Ns O i

v|=|0 N, O .. 0 0 00 || (3.145)
2 8

p 0 0 0 0 0 Npl sz Np3 ol

Py

P,

P;

P,

The derivatives of the interpolation functions wispect toc andy are computed using

the mapping as follows
X Y

x=(N, N, ...)X2 andy=(N, N, .)y2 (3.146)

wherex; and y are the nodal coordinates. The Jacobian matrithe@fmapping and its

determinant are as follows:
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0x

atl (I, 3

ot|_[Jn ). detJ:%f’_y_%"_j (3.147)
ay| (o, 9, ds ot 0to

ot

The derivatives of the interpolation functions witspect tax andy are computed as

follows:
oN, _ 1 (J aN_J aN)
ox detJ\ ?o9s ot
(3.148)
oN, _ 1 (_ aN+J aNj
dy detJ\ Y os Mot

The constitutive relationship, in the state of plastrain, for the elastic case is

written as (Timoshenko, et al., 1982)

1 L 0
o, 1-v £,
o,t= Ed-v) | v 0o |le, (3.149)
@+v)@-2v)| 1-v
Ty 1-v |y
i 2(1-v),

whereo,, g, andr,, are the stress componeriisis the modulus of elasticity is
Poisson’s ratio, and,, £, andy,, are the small strain companent
The incremental solution method is adopted for sb&ution of this example.

Hence, Eq. (3.137) that was derived at Sectior638n be rewritten as follows

K, Q Jfau)_ [ af
Q" AWK ||opf  |atKp,

The left hand side of Eq. (3.150) that is interpdetis the equivalent stiffness

(3.150)

matrix, K¢, is computed using a three point Gauss quadréduraula as described below.
The element equations are obtained by using theerigah integration method. The

thickness of the elemerit,is chosen constant; therefore, the volume intagnaduced to
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area integration and the surface integration te limegrals.

stiffness matrixK meis:

Kme:hﬂBTu DB dA=h_['B,DB ,det) ds dt

=n) > wwe]

i=1 j=1

,1)D (s, t)B, (is,;t)det (s,t

whereD is the constitutive matrix for the elastic caséra= as

E(l-v)

T

The 16 x 4 element coupling matrQe is:

Q.= hHBTu mN,dA= o ['B mN ded ds d

=h Y wWwB] (. ))m N, (5,1)ded (s,t)

i=1 j=1

The 4 x 4 element permeability matri€ge is:

KcezhﬂEaTp % B,dA=H [B],

m n

=h> > ww B; (s, })

i=1 j=1

The 4 x 4 element compressibility matrg,is:

S, = hj! NTpKi N, dA= hKinlljll N' N, det] ds d

w

m n

=h-- 3> WWN (5. 1N, (5. 1) det (s,t)

W i=1 jzl

The element load vector due to body forces is:

2(1-v) |

ﬁBp detl dsd

B, (5,t) def (s,t)

60

The 16 x 16 element

(3.151)

(3.152)

(3.153)

(3.154)

(3.155)
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R, :hJ'JNI[Ej dA= hj_llj_llNﬂ[E‘yJ det) dsd

) (3.156)
=hY. > WwN[ (s, 1) [ J det) (s,t)
i=1 j=1 by
The equivalent load vector due to distributed laads
q, Qy
R, =h[[NL| ™| da= ' ['NT[ ™| detd, dsd
-1J-1
A qy qy
(3.157)

m qx
=hy, WWNIU(M)LqJ det); (5.t)

y
wherecu subscript denotes that the interpolation functionst be written in terms of a
coordinate along a prescribed side.

Using the procedure described above, the finitenefg equations for each
element are developed. The element equationhareassembled in the global matrix.
After incorporating the essential boundary condsi@nd applying the prescribed loads
on the specified surface, the global matrices aheed for the unknowns -displacements
and pressures- using the incremental load method.

The unknowns of the one-dimensional consolidaticoblem are displacements
(settlements) and excess pore pressures at the.nddwe histories of the pore pressures
and degrees of consolidation in the middle of thie®lumn are plotted in Figures 3.6 to
3.9. In Figure 3.6, the excess pore pressureoisepl versus time factor for two different
ramp rise timesf, =0.1 antj =0.5 seconds. The time fadtdierzaghi, 1943) is the

dimensionless number.

r=5t (3.158)
=5 _

whereD=1 m is the maximum drainage path within the speairq, is the coefficient of

consolidation defined as
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k
= 3.159
C, —~ ( )
in which
_(Q+v)1-2)
_—E(l—v) (3.160)

k is the soil permeability ang, is the unit weight of water. Substitutim=0 akd=0
into Eq. (3.160) yieldsn, =1 Similarly,k/yw=1.0in the example, so that the time
factor is equal to step time 8s=t . Fgx0.1 s the pore pressure at the middle of the
model (0.5 m. from the top) is approximately 0.9k Fort;=0.5 s,the pore pressure
in the middle is computed as about 0.5 kRi/Mvhen the loading takes place in a shorter
period, dissipation of pore water pressure takegdo period of time, because under
rapid loading greater excess pore water pressutdsbup in the pores. Same results
were computed by Smith in his related work (Srnethal., 1976).

In Figure 3.7, the change of degree of consolidatvdh the time factor is shown.
The degree of consolidation is the fraction of dxeess pore water pressure that has

dissipated. It is expressed in percentage andetkfas follows:

U =2 x100%

u, —Au(t)
Au, (3.161)
whereAu, is the initial settlement antu(t) is the incremainthe settlement at every
time stept. A load placed on the soil specimen is first carfigdvater trapped in pores
which causes excess pore water pressure. Theear gi@dually escapes from the pores
during loading and load is carried by soil parsclghich creates effective stress in the
specimen. While the effective stress increasesngluloading, excess pore water
dissipates until the equilibrium is reached. WHes equilibrium is reached, the average

degree of consolidation, Jl4, is 1.0 which indicates that the soil specimenduse the

consolidation test is 100% consolidated.
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In Figure 3.7, forg=0.1 s, the soil specimen is 10% consolidatedeetid of the
ramp loading, the total consolidation is then caatgd in 3 s. Forgt0.5 s, the initial
consolidation is around 45%, the total consolidati® completed in 3 s. During rapid
loading (6=0.1 s), the soil specimen consolidates approxipatémes less than the soil
specimen under slow loading<£0.5 s). In both Figures 3.6 and 3.7, the resaiésin
good agreement with the work of Smith et al. (Spethal., 1976).

Figures 3.8 and 3.9 illustrate the variation of gpqressures and degrees of
consolidation with time in the middle of the sqiegimen. The results computed by the
finite element method are compared with the resalftsined from Terzaghi’'s effective
stress and consolidation theories. In Figure tB& pore pressures that are calculated by
Terzaghi’'s method are closer to the results ofddpading ((=0.1 s) of the soil
specimen. This is because Terzaghi's principleefééctive stress describes the pore
pressures as independent of loading rate $ection 3.2.7). Thus, it does not capture the
pore pressure change of a slowly loaded soil spatimIn Figure 3.9, degrees of
consolidation that are calculated using Terzagtwssolidation theory are closer to the
rapid loading of the soil specimen that is caladatising the finite element method,
because Terzaghi’'s method is independent of loaditeg

Figures 3.10 and 3.11 show the contour plots fae gwessures and effective
stresses in the soil column gt@.1 s andg=0.1 s, respectively. Approximately 99% of
the applied load is carried by pore water duriqgddoading (Figure 3.10). On the other
hand, during slow loading (Figure 3.11), approxehaB9% of the load is carried by the

soil particles.
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Ramp load
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Figure 3.4 The finite element mesh consisting af ®-noded elements.
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Table 3.1 Material parameters of the odometer speein Example 3.1

Material Parameter Notation Value Units
General
Unit weight of water Yw 9.81 kN/nd
Permeability Kx 9.81 m/sec
Ky 9.81 m/sec
Elastic
Modulus of elasticity E 1.0 MPa
Poisson’s ratio v 0.0 -
A
1 L
&\
£
Z
=
©
@
o
-
o
S
S
[ag
0 1 1 1 ;
0 to
Time (S)

Figure 3.5 Ramp load versus time.
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1
0.9
0.8 — Present work
e \ ~t0=0.1's
> 0.7 \ - Present work
\ _
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Figure 3.6 Pore pressure vs. time fg10t1 s andgt=0.5 s computed using FEM (present
work) compared with the published data.
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Figure 3.7 Degree of consolidation vs. time faébort;=0.1 s and=0.5 s computed
using the FEM (present work) and the published.data
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Figure 3.8 Pore pressure vs. time fg10t1 s andgt=0.5 s computed using FEM (present
work) compared with the Terzaghi’s method.
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Figure 3.9 Degree of consolidation vs. time faébort;=0.1 s and=0.5 s computed
using FEM (present work) compared with the TerzZaghiethod.
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POR S, 822

(Avg: 75%) (Avg: 75%)
+9.894e-01 —-1.061e-02
+9.069e-01 -9.306e-02
+8.245e-01 —1.755e-01
+7.420e-01 —2.580e-01
+6.596e-01 -3.404e-01
+5.771e-01 -4.229e-01
+4.947e-01 -5.053e-01
+4.122e-01 -5.878e-01
+3.298e-01 —+ -6.702e-01
+2.473e-01 1 —7.527e-01
+1.649e-01 -8.351e-01
+8.245e-02 -9.176e-01
-2.980e-08 —1.000e+00

Figure 3.10 Contour plots of pore pressure anccg¥e stresses at t=0.1 sec for the
to=0.1 initial loading.
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+1.273e-04 -9.999%-01
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Figure 3.11 Contour plots of pore pressure andeie stresses at t=0.5 sec for the
to=0.5 initial loading.
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3.5.2 Two Dimensional Consolidation Problem

Two-dimensional plane strain consolidation analgsia Biot poro-elastic solid is
considered in this example. A finite strip of ssilloaded over its central portion. For
the sake of simplicity, only half portion of theilsstrip is modeled. The ratio of the
loaded part to the half portion of the geometrghssen as 1:5 with a half-width of 60 m.
The example is modeled and solved using the felgenent softwardBAQUS®.8-node
biquadratic displacement, bilinear pore presswdyuced integration elements (CPE8SR)
are used in the model. The geometry of the meglve in Figure 3.12. The material is
chosen as elastic with a Young’s modulus of 6.8%aMnd a Poisson’s ratio of 0.0. The
initial void ratio is chosen as 1.5. Coefficienfspermeability vary with the void ratios
and are chosen as 5.08%1/s at the void ratio of 1.5 and 5.08521/s at void ratio of
1.0. The material properties are given in Table 3[Be strip of soil is assumed to lie on
rigid, impermeable and smooth base. The appliedsure on the soil strip is 500 kPa.
Neither horizontal displacement nor pore fluid flesvpermitted along the vertical sides
of the model. Free drainage is only allowed onttipesurface of the model.

The analysis is performed using two steps. Irffitsestep, the full load is applied
over two equal fixed time increments. The loadagr® constant in the subsequent step
during which the soil undergoes consolidation. Tdralysis considers finite-strain
effects, and the soil permeability varies with ¥iogd ratio. The reason for employing the
finite-strain method is to simulate the soil com$ation assuming that the permeability of
the soil decreases as it is compressed which isiqddly realistic in soil mechanics.

The deformed shape of the soil model is shown gutf@ 3.13. The contour plot
of the model for von Mises stresses is shown iufed.14. As seen in Figure 3.14, the
maximum stress is 484 kPa, and it occurs wheredisteibuted load is applied. The
stresses underneath the foundation gradually dezre@h depth. The pattern of the
stress distribution is circular (spherical for aeth dimensional model). The pore water

pressure distribution in the model is shown in Fg®.15. The pore pressures are
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approximately zero at the end of the analysis, iiezahe drainage is allowed on the top

surface.
Table 3.2 Material properties of the specimen iarfigle 3.2

Material Parameter Notation Value Units
General

Initial void ratio & 1.5 -

Permeability

at void ratio, e=1.5 Kis 5.08 X 10" m/sec

at void ratio, e=1.0 k1.0 5.08 X 10°® m/sec
Elastic

Modulus of elasticity E 6.895 MPa

Poisson’s ratio N 0.0 -
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Figure 3.12 The undeformed meshed geometry of#hec@nsolidation problem.
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Figure 3.13 The deformed shape after loading.
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Figure 3.14Contour plot of von Mises stresses on the deforboet

vgi 75%)
+4.03%-01
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=
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Figure 3.15The ntour plot of pore pressures the deformed bo..
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3.6 Summary and Discussion

In this chapter, the finite element formulation afcoupled pore pressure and
displacement problem is described. First, a cotatoidbn problem is considered. Using
the principal of averages, the balance equatioaslarived followed by the principle of
effective stress. Next, the finite element framewior the coupled problem is explained
and the finite element equations are derived ferdblution of consolidation problems.
Then, the finite element equations are verifiedviegl two steady-state consolidation
problems using the commercial software Mathematicd®e elastic behavior of porous
media was analyzed. The change in the state osttless, deviatoric stress and pore
pressure, was observed with a great accuracy. r8wts were in good agreement with

the related references.
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CHAPTER 4
COUPLED DYNAMIC ANALYSIS OF POROUS
MEDIA USING THE FINITE ELEMENT METHOD

4.1 Introduction

The coupled dynamic analysis of soil-pore fluidenaiction problems is of
tremendous interest in geotechnical engineeringgaadechnical earthquake engineering
due to its application from pile driving to eartladpe response of soil structures. The
dynamic behavior of fully saturated porous media \irest investigated by Biot (Biot,
1956). In his study, Biot expanded his originalrkvon coupled systems (Biot, 1941) to
dynamic problems using the displacement of thedsskeletonu and relative fluid
displacementv as variables. Ghaboussi and Wilson (1972) propaisedirst multi-
dimensional finite-element formulation to solve timear coupled governing equations.

Zienkiewicz et al. then introduced a simple formulation coupling the
displacement of the soil skeletonand pore fluid pressue(Zienkiewicz, et al., 1980).
The non-linear behavior of soils including largeadmations and non-linear material
behavior was also taken into account by Zienkievatal. The incremental form of
dynamic equations was derived in their studiesnldmwicz, 1982; and Zienkiewicz and
Shiomi, 1984).

The objective of this chapter is to develop thetdirelement framework for the
solution of the couple dynamic pore pressure/desteent equations to have a better
understanding of dynamic soil-pore pressure probleifhe organization of this chapter
is as follows: First, the finite element framewaskdeveloped using the Mathematica
software to solve the fully coupled Biot (1941) dymc equations using the u-p
formulation. Then, numerical examples are caraetfor the transient analyses of soils.
Next, the results are compared with commercialtdirelement package ABAQUS.

Finally, the chapter is summarized and conclusaesresented.
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4.2 Governing Equations

The governing equations for the dynamic behaviosafs are similar to those
derived for the quasi-static case explained inghevious section. The mass balance
equation for the dynamic case is equivalent toettpgation used for the static case with
the assumption of the grains are incompressibles fdoid is compressible and the soil is
saturated. The dynamic formulation for the lineexmentum balance equation for a two-
phase medium can be expressed assuming that énadmon forces and the acceleration
of the fluid term in Eq. (3.75) are neglected. Timal form of mass balance and linear

momentum balance equations are defined as follows:
. k W H S
——+dlv{—w(—grad p+ o g)}+ divu®*=0 (4.1)
7,

06+ pg = pi° (4.2)

4.3 Initial and Boundary Conditions

It is necessary to define the initial and boundasgditions for a boundary value
problem. The initial conditions specify the fulield of displacements and water
pressures at time0 as follows

u=u, p=p, inQandor 4.3)
where Q is the domain of interest and is its boundary. The imposed boundary

conditions displacements and water pressures dof@ss:

ru
- (4.9

The traction boundary condition for stresses is

"o =t onl, (4.5)
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Finally, the flux boundary condition for water frafg. (3.28) is

W k " T
Yo, ﬁ(—grad p+p g) (h=q onl", (4.6)

whereq is the imposed mass flux normal to the boundd&guations (4.4) and (4.5) are

natural boundary conditions for the correspondialgibce equations.

4.4 Finite Element Implementation

4.4.1 Weak Form

IQ{{E“TG_UT'O(Q_US)}J{EKLW p+§pTﬂLW(_grad P p"g)+ ' SH - 4.7)
e[ p L

where the virtual displacements, virtual straing @intual pore pressure derivatives are

u={u,v,w}'

u:{a_ua_va_w@ 9V v, dwou a_‘g (4.8)
X 0y 0z dy dxdz dyodz o

_:@@@T

P |lox dy oz

4.4.2 Finite Element Equations

The displacements and the pore presspires are apmteximusing the

weighted residuals method (Galerkin approximatiomagcribed in Section 3.3 in the

following form:

0=0=>) N,uu =Nu (4.9)
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p=Pp=2NyR=Nyp (4.10)

whereu andpare nodal parameters of each field &hcandN, are the appropriate shape

functions. Substituting the assumed solutions tnéoweak form yields
J'{{EUT (DeB M- mNTpp) -U' pg-U" pN JJS}
Q

+{TJTKLNpD+5pTﬂL(BpP-pW9)+TJTmT BuuH do (4.11)

w w

=]t dr+jrﬂb% a

The sets of weighting functions are the columnshef matrix of the assumed solution

functions defined as follows:

B, O
u N, O g 5
N an E | -|B 0 4.1
p 0 N, P P (4.12)
p

Incorporating the shape functions and their defrestinto the weak form, the following
sets of equations are obtained.
T = T _ T
[ p(NINido+[ (BIDB)ud-| (B, mN )pdQ

(4.13)
T T
§ NIpgda+| Nitdr

: n . k _
[ Nim™B,udQ + Noo N b+ jQBTpﬂ—B pd =
" " (4.14)

L o

The final form of the spatially discretized lineapomentum and mass balance equations

are then written in the compact forms as follows:
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M +K _u-Q p=f" (4.15)
Q'u+Sp+K, p =f° (4.16)
in which

M, = | NN dQ (4.17)
K, =[BDBd (4.18)
Q= jQBJmdiQ (4.19)
s=|, N;Ki N, dQ (4.20)
K. :IQBLLBp do (4.21)

Hy
fu =jQijg dQ+er§t a (4.22)
fP =jQB;ﬂ—Wpr dQ+J-quN;g—VVVV a (4.23)

where Ms is the mass matrix for the solid pha&g, is the elemental elastic stiffness
matrix, Q is the coupling matrix$ is the compressibility matriX. is the permeability
(flow) matrix, f' is the elemental vector of external forces, &#hdiks the fluid supply

vector. The final matrix form of the coupled dyrianequations for consolidation is

5 L S Y] e

4.5 Discretization in Time using the Newmark Aldonn

expressed as

The total discrete equilibrium equations for thé-8oid mixture were developed

using the finite element method in the previougisac In this section, the discretization
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process will be carried out in the time domain tesgnt a solution for the transient
problems including linear and non-linear cases. pBoform the step-by-step time
discretization, theNewmark algorithm(Newmark, 1959) which is a widely applicable
finite difference approximation will be used foretlsolution of the dynamic coupled
equations in the time domain (Zienkiewicz, et 40985). Assuming that the nodal
displacement vecton,, and the nodal velocity vectar, at timet, are known, the

approximations fou,, ., andu,,,; at timet,,,;can be written as follows:
_ . 1 2.0 200
u,, =u,+Atu, + 3 B AU+ BALU

=u, +Atu, +%At2[]n - AU+ AL, = U, + AAUA (4.25)

U, =0, +(1- y)Atl, + At
=0, +Atll, — AT, + AR, S U7, + AT,

where
p — . 1 2.
Ur, =u,+Atu, +-AtU,
2 (4.26)
urﬁ)ﬂ = l"In +Atun

For the approximation of the pore pressure varighle at t,,,;, the approximation of

P,., IS written as follows:

P =P, t - Q)Atpn +AAtp n+l

(4.27)
=p, tAtp, —aMp  +aAtp ., =ph, FOAtAD
where
Pl =P, AP, (4.28)
with the unknown terms defined as
Ad ,=U0.,,-U0,  and ADp.,=p,..—P, (4.29)
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The variables with superscripp’‘in the above equations suchugs,  , etc. denote the
values that can be ‘predicted’ from the known paetars at time,.

The finite element discrete approximations for tymamic coupled governing
equations (Equations 4.15 and 4.16) were alreadyetkin the previous section. To
perform the discretization in time domain, the apgnations for the nodal displacement,
pore pressure and their derivatives with respecinte are substituted in the governing

equations as follows:

Msuml"'K i ml_Qp r+1_f L:+1=0

QTun+1 +Spn+l + ch n+l_fr[13+1=0

(4.30)

Substituting the approximated descriptionlpf,  dng,  thmfirst governing equation

above vyields

Msu n+1+K m{u n+AU n+(l_ﬁjAﬁJ n+:8Atﬁ' H‘lj|
2 (4.31)

-Q[p, + (6 Mp,+atp,,,]-f, =0

Substituting the predictable values into Eq. (4y88)ds

M (U + A g ) +K (U P, + BACAT ) -Q (P B, + 6D ) 5,20 (4.32)
Rearranging the terms by writing the unknown teonsthe left hand side and known

terms (the terms to be predicted) on the right kdds

(M, +BAK AT, ~(BQ )& =M U K Y, PP " Y (4.33)

Similarly the second governing equation can be esged as follows:

Q" [u, + (@~ y)Atl, + jAti .| +Sp,.,

+K [P e+ 1-0)AD + 6N, ] 2, =

(4.34)

Rearranging the predictable terms yields
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QT (U, +JAMAU ;) +S( b, + AP, ) + K (5, +@MAP ) -T7,=0  (4.35)
The terms can then be rearranged as follows:

(thT)Aunﬂ + (HAtK c +S)Ap 1 _QTuﬁﬂ_Spn_ K chr)+1+f 21 (4-36)

The governing equations in terms of approximatedalbées can be coupled and

presented in a matrix form as follows:

MS+,BAt2Km -6MQ AU My, K ‘f* €Qp ‘; + L,‘,r
{}:y W A
},A'[QT HAKC+S n+l Ap n+1 _QTu§+1_Spn_chﬁ+l+fﬁ+l
where
u — T » T
f'=| Njpg do+[ Nit o
(4.38)

k v
fP :J'QBL'U—,O g dQ+J‘quNL% da

In a more compact form, the above equation may iteew as

M+ BAtK -60AQ {Au} R,
= (4.39)
}'AtQT an K c +S n+1 Ap n+l R PJn

Ru :_Myn_K H F;+1+Qp ':+1+f L:rl

in which

=-My -K m(u + AU n+1mﬁ' n)+Q P +ap )+
2 (4.40)

R, =-Q'up,=Sp,~Kph,+f 1,

n+l

=-Q" (u, +Atl,)-Sp, + K (p,+Atp )+,
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The solution procedure for the final form of theiation system is as follows:

1. Select the Newmark parametMsB éd . The selectiothofNewmark
parameter§, LB and is very important, because the snlgin be unstable if
these parameters are not selected correctly. Themdrk algorithm is
unconditionally stable and thus fully implicit wheine following conditions are

satisfied (Zienkiewicz, et al., 1985):

1
4 2 (4.41)

2. Enter the prescribed initial conditions ®tin the final form of the dynamic
governing equation system.

3. Solve the equation system, Eq. (4.40), at time for the incremental nodal
acceleration and nodal rate form of pore pressiigs, andAp,,, .

4. Update the solution to find the nodal acceleratiahsthe rate form of pore
pressures at timg,,

5. Repeat steps 1 through 4 at each time step witimn@ement of At until the

solution is complete.

4.6 Numerical Applications

4.6.1 Transient Analysis of a Soil Column
An elastic soil column, which is shown in Figuré 4s subjected to a surface step
loading of 1.0 kN/mh  The step loading is applied with an initial tim£0.1 second as
shown in Figure 4.2. The soil column has a widtl8 on and a height of 30 m. 1t is
modeled using ten 8/d/p elements where 8-node displacements coupled twdé-pore
pressures. The porous medium is considered gsdatlirated with water. The material
is considered as isotropic and elastic. The nadtproperties are given in Table 4.1. The

boundary conditions are shown in Figure 4.1. Cagénis not allowed in the first 0.1 s.
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The drainage is allowed only on the top surfaceratie initial loading is complete
remaining constant until the end of the analysighe other sides are kept undrained
during the analysis. A direct implicit algorithns adopted for the solution of the
problem. Time-stepping parameters are chos¢x@38025,6=0.6 andy=0.6.

The solution for the analysis of consolidation e tsoil column is obtained for
two time intervals with different time steps. Timst analysis is run within a total time of
t=20 s with a time step &ft=0.05 s. The second analysis is run within al tot@e of t;
=200 s with a time step @t=0.2 s. The reason for choosing two differentetisteps is
to show the effect of loading rate on the changparé pressures. Three nodes namely
Node 1, Node 26 and Node 46 are selected to shewdhe pressure change in the soil
column. Node 1 is located at the bottom, Nodes2@cated in the middle and Node 46
is located at the top of the soil column. Timetdmg of pore pressures fae=20 s and
=200 s are plotted for Nodes 1, 26 and 46 as showigures 4.3 and 4.4, respectively.

In Figure 4.3, the pore pressures vs. time ardquat Nodes 1, 26 and 46 for a
total loading time of;=20 s with a time step oAt =0.05 s. The pore water pressat
Nodes 1 and 26 are constant throughout the analysishave a value of 1 kNfm The
pore water pressure at Node 46 has a value of N/thkat time t=0.1 s and gradually
decreases to a value of approximately 0.6 Kh\ginthe end of the analysis as shown in
Figure 4.3. The initial excessive pore pressur@.BfkN/nf occurs at Node 46, because
the load is applied rapidly on the top surfacenc8ithe load is applied within a very
short period of time, the trapped water in the pareates excessive pressure before it
leaves the pores.

Figure 4.4 shows the pore pressures at Nodes an@el6 for an analysis period
of =200 s with a time step At =0.2 s. The pore pressutheatottom of the soil
column remains constant throughout the analysishaisca value of 1.0 kN/m The pore
pressure in the middle decreases gradually fromkNGn’to 0.8 kN/nf. The pore

pressure on the top surface decreases from 1.2%t¢/f.2 kN/nf during the analysis.
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The top surface is drained, thus the pore pressilwss to the top surface dissipate with a
faster rate compared to the pore pressures indtierb of the soil column. That is the
reason the pore pressures at the bottom remairacdrteroughout the analysis. All of
the results are in good agreement with the puldista#a (Huang, et al., 1998).

In Figure 4.5, the pore pressures for the same pbeanbtained from the finite
element package ABAQUS are plotted. The resultsvehia Figure 4.5 match perfectly
with the present work which is conducted usingfthi#¢e element code implemented in
Mathematica software. The contour plots of theeppressure distribution in the soill
column for tf=20 s and tf=200s are shown in Figu@ The first plot shows pore water
pressure decreases from 0.0 kRom the top surface to 0.9 kN/mio a depth of
approximately 6 m from top. The second plot shdlweg pore water pressure changes
from 1.0 kN/nf t00.9 kN/nfwithin a depth of approximately 21 m from the tapface.
This comparison shows the effect of time that puneed for dissipation of pore water
pressure. The longer the analysis time, the grehte dissipation occurs in the soll

column.
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Figure 4.1 Finite element mesh of the one-dimeraielastic soil column.
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Table 4.1 Material properties of the soil column

Material Parameter Notation Value Units
General
Density of solid Ps 2.0x 10° kg/nt
Density of water Pw 1.0x 10* kg/nt
Permeability k 1.0x10* m/sec
Porosity n 0.3 -
Elastic
Modulus of elasticity E 3.0x 10" kN/nf
Poisson’s ratio v 0.2 -
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Figure 4.2 Ramp load versus time.
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Figure 4.3 Pore pressure vs. time at nddeg26and46 att=20 sec witmt=0.05 s.
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Figure 4.4 Pore pressure vs. time at nddeg6and46 att=200 sec wit\t=0.2 s
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Figure 4.5 Pore pressure vs. tim&=20 sec using the ABAQUS software.

www.manharaa.com




95

,\
&

(b)

Figure 4.6 Contour plot of pore pressure distridnuin the soil column at (#)=20 s and
(b) t=200 s.
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4.6.2 Transient Analysis of a Soil Foundation

An elastic soil foundation is subjected to a swefatep loading is analyzed in this
numerical application. The finite element meshh& model and the boundary condition
are shown in Figure 4.7. The commercial finite edampackage ABAQUS is used for
this analysis. Eight-noded, continuum, biquadratmpled displacement/pore pressure
element elements are used in this analysis. Tmeegletype CPE8P which is available in
the ABAQUS element library is shown in Figure 4.8.

The material properties are identical to those usdeixample 4.6.1 as shown in
Table 4.1. The elastic soil foundation is consdefully saturated. A surface step
loading of 350 kN/rhis applied at an initial time of 0.1 s. The deaje is not allowed
during initial loading. After t=0.1 s, drainageaiowed only on the top surface until the
end of the analysis. The soil consolidation islygel untilt;= 50 s with fixed time steps
of At=0.05s.

Three nodes are selected to analyze the pore wedssure change in the finite
element model. Nodes A, B and C are located at 6l2nm and 15 m below the
foundation level respectively (Figure 4.7). Thergavater pressures versus time are
plotted at Nodes A, B and C as shown in Figure 4'Be pore pressure at Node A starts
from approximately 110kN/fand increases to 120kN?mand decrease gradually to a
level of 60kN/nf. The initial increase occurs within the first sigconds. This can be
explained by the rapid loading of the foundatiohhe pore pressure at Node B starts
from approximately 65 kN/fand increases to 67 kNfwithin the first 25 seconds and
then decreases to 65kNImAt Node C, the pore pressure remains almosttanhat the
level of 58 kN/n3 during the analysis. As the depth increaseseffeet of the applied
load on the pore pressures becomes less significdhis can also be explained by
evaluating the contour plot of pore pressures agvshn Figure 4.10. In this Figure, the
pore pressure distribution at£t50 s is plotted. The pore pressure isOkiNém the top

surface and gradually increases to 68 kiNama depth of approximately 15 m below the
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ground surface, then decreases to 50KNffihe level of 30 m below the ground surface.
The pore pressures dissipate further away fronfdhedation as shown in Figure 4.10.

The Von Mises stresses in the finite element madel shown in Figure 4.11. The

stresses start from 245kNfat the ground level and decrease to OkNan30 m below

the ground surface. As shown in Figure 4.11, thess distribution follows a circular

pattern underneath the foundation. The resultsamnsistent with those of Huang, et al.

(1998).
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Figure 4.7 Finite element mesh of an elastic snihHation.
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O d d, displacement degrees of freedom

A d, d, andp displacement and pore pressure

Figure 4.8 Representation of eight-noded, continunigquadratic, coupled
displacement/pore pressure element in ABAQUS/Stahda
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Figure 4.9 Pore pressure vs. time at nddeBandC.
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Figure 4.11 Von Mises stress distributiort;at 50 s in the soil foundation.
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4.7 Summary and Discussion

Transient analysis of porous medium is formulatethg the finite element
method based on the works of Zienkiewicz and hlkeagues (1980, 1982, and 1984).
The governing equations for the dynamic behaviosafs are derived using the mass
balance and linear momentum balance equationssdihé considered as comprised of
soil skeleton and pore water. It is assumed thasthl grains are incompressible and the
pore water is compressible. The soil is assumeldetdully saturated. The interaction
forces and the acceleration terms are neglectdteigoverning equations.

Finite element equations are developed by dis@tbiz the governing equations
in spatial and time domains. The discretizatiospatial domain is carried out and the
final forms of governing equations are describ&the discretization in time domain is
performed using the Newmark algorithm (Newmark, ddBased on the final form the
coupled dynamic equations, a finite element codealaseloped using Mathematica
software.

Numerical applications are exhibited for validatihg finite element code. In the
first application, a soil column is analyzed undgnamic loading. The change of pore
water pressure over time is illustrated under dmirconditions. In the second
application, a strip foundation is analyzed undgnainic loading. The effects of pore
pressure changes caused by rapid loading are igatst. It is found that the rate of
loading has a significant impact on the magnituflexxessive pore water pressures.
These applications are also carried out by ABAQUBwsare. The finite element code
has been beneficial for interpreting the resultaioled from ABAQUS. The results are

found to be consistent with the published data.
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CHAPTER 5
ELASTO-PLASTIC CONSTITUTIVE MODELS

Constitutive modeling of soil behavior under gehdoading and variable site
conditions plays a key role in obtaining accuratenarical results. A linear elastic
constitutive relationship has been widely used dpresent soils in early numerical
studies; however soil behavior is highly nonlingarmost cases. The choice of an
appropriate stress-strain relationship @fahlization of the soil material behavior with the
assumptions of continuum mechanics become essentighis chapter, first the stress-strain
relations in continuum mechanics are reviewed Ve#ld by the equations of stress
equilibrium. Next, the generalized theory of piest is explained. Then, the extended
version of the Mohr-Coulomb plasticity model is déised in detail. Subsequently, the
Drucker-Prager plasticity model is explained. Hipathe summary of these constitutive

models is presented.

5.1 State of Stress

5.1.1 Stress Tensor
The state of stress for three-dimensional poirdeined by a matrix containing
nine stress components as shown in Figure 5.1. nifleecomponents of the stress at any

point form a second order tensor, known as thesstensor which can be defined as:

axx axy axz

c=\0, O, O, (5.1

z
azx azy azz
The shear stresses in the stress tensor havellihwsifg relationships due to the moment

equilibrium as follows:

g.,.=0

Xy yx? Xz zX yz z

(5.2)
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As a result the stress tensor is comd of six independent components. Th

components are called normal stre<(o,,,0,,,0,,)and shear stressgs, ,0,,,0,) .

‘//J L Z= ,:/ /
PR e
”/ """"""""" -

Figure5.1 Stress state for three-dimensional elements

5.1.2 Principle Stresses
The state of stress a point can also be defined in terms of principleste

0,,0,andg, . Theprinciple stresses are related to the componentiseo$tress tensor |

the following equation:
o’ -1,0+l,0+,=0 (5.3)

wherds, I, andlz are known as the first, second and third stresariamt, respectively

These stress invariants are defined as foll

Il = Jxx +UW+JZZ
: (5.4)

|2_0-xx0-yy+0-y;p-yy+0-zg XX ny o yz o Xz

— 2 2 2
l _Uxxa-yyazz_axgyz_a ;9' xz_a g xy_za Q)-/ q-z
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The stress invariants can also be expressed irstefprincipal stresses in the form of:

Il = 0-1+0-2+0-3
l,=00,t00,t00, (5.5)

|3 = 0-10-20-3

5.1.3 Mean Stress and Deviatoric Stresses
The state of stress at a point tensor can be esguess the sum of two other
stresses: the mean stress (volumetric stress)highvends to change the volume of the
stressed body; and the deviatoric stggss which temdsstort it. The mean stress of a

stressed point is defined as the average of nastresses in three directions as:

1 1
ng(axx-{-o-yy-'_azz):gll (56)
The deviatoric components of the stress are detayed

§ =0 -, (5.7)

wheredij is th&Kronecker deltdunction defined as:

|4, fori=j (5.8)
" \o; fori #j :
The three invariants of deviatoric stress are
J,=5,=0
1 1
JZ:ESﬁ§:§( P+21,) (5.9)

J, :%sj S 8 =2i7(2 F+911+ 27I3)
It is noted that in the theory of soil plasticitie most useful stress invariants are
l;, J» and J;. Physically, I; indicates the effect of mean stress, represents the
magnitude of shear stress, ahdletermines the direction of shear stress. Alldhbgee

guantities have a key role in the theory of elaglastic stress-strain relations. In soil

www.manaraa.com



106

mechanics (Roscoe and Burland, 1968; Muir Wood,0L,9%e mean stregs is often
used in pair with a generalized shear stepdsfined as:

1/2

q %[(0—1_0’2)2 +(0-2_0-3)2+(0-3_0-1)2]
N

N

(5.10)

The stress invariants can also be interpreted geimaléy in the principal stress
space. The state of stress at material point #henprincipal stress coordinate system is

shown in Figure 5.2. The andlas called the Lode angle which is defined as:

9=-Lsin {ﬂi} (5.11)

In terms of the mean strepsand the shear stregsthe principal stresses can be

expressed as follows:
2 .
o, = p+§ gsin(6+120)
o, = p+§qsin(9) (5.12)

o, = p+§ gsin(6-120)
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Point A

0: Lode angle

01+ O2+ Oz=constant

01

Figure 5.2 Lode angle on a deviatoric plane.
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5.2 Generalized Theory of Plasticity

Soil deformation contains elastic (recoverable) ghaktic (irrecoverable) strains
upon loading and unloading paths. Elastic stragt®ant for small fractions of the total soil
deformation (Koolen and Kuiper, 1983 and Shen anghkvaha, 1998). The reversible
behavior of elastic strains upon removal of loadooglld be of linear or non-linear forms
(Chen and Mizuno, 1990). Incremental theory of fid#tg has been used successfully in
describing the deformation of a wide range of makeiincluding soils. In this theory, there
are three components of the constitutive modelribatl to be defined:

= the vyield criterion, which defines the transitiorf elastic to plastic
deformation;

= the plastic flow potential, which dictates the tida amounts of each
component of the plastic flow; and

= the evolution of the microstructure, which in tutafines the resistance to
further deformation.

For an elastoplastic material with isotropic hardgn the yield surfaceis
described by a yield function of the forim(e, x), wheree is a vector of the current
stresses and is some hardening parametert (b, x) < 0, the stress point lies within the

yield surface and the material behaves elastieaitprding to

c =D.¢ (5.13)
whereDe is the elastic stress-strain matrix, = {ax, 0,,0,,T,,,T, ,ryz}T is a vecfor o
stress components, amdﬁ{ax ErE1 Vg Y yyz}T is a vector of strain coergen
Once yielding takes placef (g,«) = 0 and the stresses reomaite yield
surface as plastic deformation occurs. When yigldiagins, the rate form of the yield

function which is also known as tkensistency conditiocan be expressed as follows:

;
df = (ij dc+£d/( =aTob+£dK=0 (5.14)
Jo 0K oK
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wherede is a vector of stress ratelscg—f is a hardenieg aad
K

(5.15)

'or

_of _{af of  of of o of }T
X y 2 xy xz y2

is the gradient to the yield surface. At this stapkasticity theory makes two key

assumptions. The first is that the total straie d&, can be expressed as the sum of an

elastic strain ratede, , and a plastic strain raig, according to
de = de, + Ck, (5.16)
The second is that the direction of the plastiaistrates is normal to a surface called the

plastic potential. This assumption is caltbd flow rule and it can be expressed as

de, = di 9 dl h (5.17)
Jo
whereg is the plastic potentialdA is a positive constant known as the plastic istraie

multiplier, and

.
ho09 _ ag,ag’ag,ag,ag’ag (5.18)
0o do, do, 0o, 01, 01, 0T

xz yz
is the gradient to the plastic potential. For coneece, the plastic potential is usually
assumed to have a form similar to that of the ymlterion. When the gradients to the
plastic potential and the yield criterion are calent, plastic flow takes place in a
direction which is normal to the yield surface dhd flow rule is said to be associated.
Any other type of flow rule is said to be nonasatail. Associated flow rules are often
used in metal plasticity studies and a number gfartant uniqueness theorems can be
derived for them (Hill, 1950).

Differentiating Eq. (5.12) with respect to time asubstituting Equations 5.15 and

5.16 yields

de = D,(de-dah) (5.19)
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Inserting Eqg. (5.18) in Eq. (5.13), the consisteaagdition, the plastic multiplier may be

written as

:
di = Lerg (5.20)
H + a D,

where the parametetis given by

of dk
H=-— =" 5.21
ok dA (5-21)

Substituting the expression farA  from Eqg. (5.19%0i&q. (5.18) yields

.
do =D, dg—— 2D (5.22)
H +aD,h
which can also be expressed as
.
do =| D, - DM@ De (5.23)
H + aD,h
The final form of the standard elastoplastic stssain relations is defined as
do =D, de (5.24)
where
D.ha' D
D, =D = e 5.25
° °® H + a' D,h (5:25)

is known as the elastoplastic stress-strain maBixen that the strain ratde is known,
Eq. 5.23 describes a small system of ordinary wffeal equations which can be
integrated over a specified time interval to obtdia unknown stresses and hardening
parameter. The initial conditions for this systema the known stresses and hardening

parameter at the start of the time interval.

5.3 Mohr-Coulomb Plasticity Model

The Mohr-Coulomb plasticity model is a perfect plasy model which was

proposed by Coulomb (1773) for cohesive frictionaterials. The yield criterion is
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expressed in terms of shear stréss  and normakstfe acting on a plane. The model
suggests that the yielding begins as long as tharsttress and the normal stress satisfy
the following equation:

7| =c+0, tang (5.26)
wherec is the cohesion ar@ is the friction angle. The MBbulomb model is based
on plotting Mohr's circle for states of stressailuire in the plane of the maximum and
minimum principal stresses. The failure line is thest straight line that touches these

Mohr's circles as shown in Figure 5.3.

5.3.1 Yield Criterion
The Mohr-Coulomb model can also be expressed mgeaf principal stresses.
The yield criterion is defined as:

f =(0,-0,)-(0,+0,)sing- x cogp= ( (5.27)
forg,20,20,where 0, an@,; are the maximum and minimum principaksses
(positive in tension). The Mohr-Coulomb yield sag® on deviatoric plane is shown in
Figure 5.4.In terms of stress invariants and Lodagle, the Mohr-coulomb yield

criterion takes the following form:

i :@‘WH_”‘(&@ ccosp= ( (5.28)
where
m(6,¢) = E (5.29)

(«/i_% cosd+ sird sirzp)

5.3.2 Plastic Potential
In the Mohr-Coulomb model, the plastic potenti&esa very similar form of the
yield function. In the plastic potential, insteafithe friction angle, the dilation angle

(smaller angle) is used as follows:
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9=y3, -V | i) ccomy= (530)
where
V3
G.) = 5.31
m(6.4) (\/§cose+ sirg silz)l/) (631

If the flow rule is associated, then the yield enibn and the plastic potential
coincides which yieldgg=¢ . In the non-associateavfltase, the plastic potential and
the yield criterion must be linked by a stressidif@y equation. The most widely used
relationship between the angles of friction anatih is developed by Rowe (1962) and

further simplified by Bolton (1986) is as follows:

y=125¢-9,) (5.32)

whereg, is the angle of friction at the critical state
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A Mohr-Coulomb
Failure envelope

Figure 5.3 The Mohr-Coulomb failure envelopewmnplane.
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G1= G2= O3

> O>

Figure 5.4 The Mohr-Coulomb yield criterion on avidéoric plane.
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5.3.3 Mohr-Coulomb Model in ABAQUS

The Mohr-Coulomb model in ABAQUS is an extensiontloé classical Mohr-
Coulomb failure criterion. ABAQUS offers a Mohr-Glomb model which uses the
classical Mohr-Coulomb yield criterion: a straidine in the meridional plane and a six-
sided polygon in the deviatoric plane. However, AlBAQUS Mohr-Coulomb model has
a completely smooth flow potential instead of thessical hexagonal pyramid: the flow
potential is a hyperbola in the meridional plarmg] & uses the smooth deviatoric section
proposed by Menétrey and William(1995).The yielddiion, f, is defined based on the
classical Mohr-Coulomb constitutive model with regic hardening or softening.. The
flow potential, g, however, which is defined after the work of Meegtiand William
(1995), is a hyperbolic function in the meridiorsatess plang(p—R..9Q and has no
corners in the deviatoric stress. The yield fungctio for the Mohr-Coulomb model in

ABAQUS is defined as:

f =R..0- ptang— = C (5.33)
in which
. my 1 Vs
= sinf @+— |+=cog f+— | ta 5.34
° J3cowp ( 3} 3 { 3} v (5:34)
1
p= —:—gtrace(a) (5.35)
3
q= E(S:S) (5.36)
9 1/3
r :(ESES: Sj (5.37)
(Lj =cosé (5.38)
q
S=o0+pl (5.39)
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where R, is a measure of the shape of the yield smiifather-plane;p is the pressure
stress;g is the von Mises equivalent stressis the third invariantS is the deviatoric
stress tensow is the total stress (negative in compressibng;the unit tensorp is the
angle of internal friction of the material aritlis the deviatoric polar angle defined after
Chen and Han (1988).

The flow potentialg, which was proposed by Menétrey and William (1985
hyperbolic shape in the-R,g plane (meridional plane) and in smooth ellipti@s in

then-plane (deviatoric stress plane). It is definedodisws:

g= \/(gctan(//)z +(R,9° - ptary (5.40)

in which

)y .
R11V_2(1—e2)c039+( o )\/ 4 t+ é)( ca8)’+ B- éRm(:S’gaj &40

whereg is the meridional eccentricity; c is the cohesobrihe materialyy is the angle of
dilation and;e is the deviatoric eccentricity. The family of Mérgy/-William hyperbolic
flow potentials in the meridional plane is shown Rigure 5.5. The comparison of
Menétrey-William flow potentials in the deviatopane with the Rankine and von Mises

theories are shown in Figure 5.6.

www.manaraa.com



117

7
& 7
o /
P
/i" I! P 3
Va s
R A
74 V4 2
VY 7= 7 —
2 P 4 7=
74 4 4
v B s
/,. ’.l /:
L 4 " 4
/4 L2 S
4
4 Y ey -
s x|
oA 4 4
Ry NI/ 4 - 4
Y Y S
SF A
A 2 s R
/’ s'_ // :ii /, si
. | B4 R4 L » p
»

Figure 5.5 Thedmily of Menétrey-William hyperbolic flow pentials in the merional
plane.

www.manharaa.com




118

0=n/3

Menetrey-William

(1/2<e<1) Rankine (e=1/2)

0=4n/3

Mises (e=1)

Figure 5.6 Menétrey-William flow potential in thedatoric plane.
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5.4 Drucker-Prager Plasticity Model

The Drucker-Prager plasticity model was propose®hycker and Prager (1952) for
frictional soils including the effect of mean ssess observed in soil experiments. The yield
criterion and the plastic potential of the plasyicmodel are explained in the following

subsections.

5.4.1 Yield Criterion

The yield criterion for the Drucker-Prager pladtianodel is defined as follows:

f =q-ptanf-d=0 (5.42)
whereq=./3J, is the generalized shear stregs3/3(1,) is the steess 3 is the
friction angle of the material and,is the cohesion of the material. The parameiensd
d can be matched with the Mohr-Coulomb material petars ¢ (cohesion) ang(angle
of internal friction) for two different flow casessing a certain criterion as summarized in
Table 5.1. The Drucker-Prager yield surface is garad with the Mohr-Coulomb yield
surface in Figure 5.6. While the Mohr-Coulomb gieurface is a hexagonal on the
deviatoric plane, the Drucker-Prager yield surfagea circular shape. The three-

dimensional yield surface which is a cone is illatd in Figure 5.7.

Table 5.1 The relationship between Drucker-Pragaemnal constants and the Mohr-
Coulomb material parameters

Flow rule Drucker-Prager Material Constants
Associated flowy = @ i
tang3 = \/§S|n(p d= x/éccosgo
,/1+}sin240 ‘/1+}sin240
3 3
Non-associative flowy =0 tanB=+/3sinp d =/3ccosp
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5.4.2 Plastic Potential
To complete the formulation of the Drucker-Prag&asfpicity model, a plastic
potential should be defined. Similar to the Molaedmb plasticity, a plastic potential
can be adopted which coincides with the yield suafas follows:

_ 6siny

= constan 5.43
3-siny P ( )

g=q

where the angle of friction is replaced by the argjldilationy.

Mohr-Coulomb

01

Drucker-Prager

Figure 5.7 Mohr-Coulomb and Drucker-Prager yieldates on a deviatoric plane.
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Figure 5.8 The Drucker-Prager failure surface oewdatoric plane.
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5.5 Summary and Discussion

The general plasticity and two soil constitutive dals available in ABAQUS
have been reviewed in this chapter. The theorthefMohr-Coulomb plasticity model
and the Drucker-Prager model are presented. Thensabes and limitations of these

two constitutive models are given in Table 5.2.

Table 5.2 The advantages and limitations of soillet®

Constitutive Model Advantages Limitations

Mohr-Coulomb

Simple Yield surface has corners

Valid for many soil types Neglect the effects nfermediate
principal stress

Model parameters can be
obtained easily from soll
experiments

Drucker-Prager Simple to use Excessive plastic tafiley at
yielding

Can be matched with Mohr-Cannot reproduce the hysteret
Coulomb model behavior within the failure surface

c

Analysis techniqgues can beCannot predict the pre pressy
implemented build-up during an undrainge
cyclic shear loading

o=

Satisfy the associated flow rule -
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CHAPTER 6
LOAD CAPACITY ANALYSIS OF SINGLE PILES

6.1 Introduction

A number of numerical and analytical methods hawenb developed for
analyzing axially loaded piles. These methods &)yehe simplified analytical approach
(Randolph, et al., 1978; Randolph, et al., 1972);tle load transfer methods (Seed, et
al., 1957; Coyle, et al., 1966); (3) the subgraekection method (Chow, 1986); (4) the
integral equation or the boundary element methaxil@#, 1968; Poulos, et al., 1968;
Butterfield, et al., 1971; Banerjee, et al., 1978ulos, 1979; Poulos, et al., 1980) and; (5)
the finite element method(Ellison, et al., 1971;sBe et al., 1974; Ottaviani, 1975;
Poulos, et al., 1986; Cheung, et al., 1991; De Idjcet al., 1993; Wakali, et al., 1999 and
Zhang, et al., 2002).

The finite element method is a general and dirppr@ach for investigating the
fundamental behavior and response of single pileshis method, soil medium is treated
as continuum based on the elastic continuum thedhe major advantages of modeling
the pile-soil interaction using the finite elememéthod are: (1) The displacement and the
pore water pressure can be coupled in the anagsibat the pile, surrounding soil and
the pile-soil interface can be represented bydisiements using only one model; (2) the
deformation patterns in the pile-soil model canabalyzed at the element level which
gives us a tremendous opportunity to analyze tbal lstresses and strains at the locations
where the intensity of the stress is high and;tl§®) soil-pile interface can be modeled
with interface elements so that the friction betwé®e pile and the surrounding soil can
be represented with a high level of accuracy.

This chapter focuses on the load capacity anabfssngle piles using the finite
element (FE) method along with the theoretical méshthat are used to estimate the

ultimate pile load capacity. Dynamic analysis o$iagle pile will be discussed in the
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next chapter. The organization of this chapteassfollows. The first section briefly
discusses the numerical and analytical methodshidnae been developed for analyzing
load capacity of single piles. The second sedtictudes the major analytical methods
for determining the pile load capacity. The estioraof end bearing capacity and skin
friction resistance of piles are explained in detaiThe next section explains the finite
element formulation that is used in this chaptetd@termine the stresses and strains in the
pile and soil. Numerical applications that illuge estimation of pile load capacity using
the finite element method and the analytical methak presented next. A single pile
which is embedded in normally consolidated claynmdeled with and without interface
element to investigate the effect of soil-pile ratgion. The factors affecting the pile
capacity such as the frictional properties of tbi-ile interface are also investigated in
this section. Finally, the analytical methods tha used to estimate the pile capacities
are compared with the results of the finite elemamlyses. In the last section, the
results obtained from the analytical methods ane fimite element analyses are
compared. The limitations of the analytical meth@hd the effects of the interface

elements are discussed.

6.2 Ultimate Bearing Capacity of Single Piles

A single pile subjected to axial loading is shownFigure 5.1. When an axial
load is applied on the pile head, the load is suppoby two mechanisms: the end
bearing at the tip of the pile, and the skin foatialong the shaft. The ultimate axial
capacity,Qu, of a single pile is, therefore, equal to the safnthe end bearingQ., and

the skin fiction,Qs as follows:

Qult = Qe + Qs
= QA+ fA

whereq, is the unit end bearing, s the area of ghefti is the unit skin friction, and

(6.1)

A, is the area of the pile shaft.
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Q: Load

Pile D: Pile diameter

Ground surface
XX

—> ——> ——> —>

T fs: Unit side resistance

TTT Qe Unit end bearin

Figure 6.1 Axial loading of a single pile
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6.3 End Bearing Capacity

6.3.1 General End Bearing Capacity Formula
The general end bearing capacity formula is preseby Meyerhof (1951) which
can be applied to both rough shallow and deep fatimas. The formula is expressed as

follows:

Q.=[ eN+ dN 5y By | 2 ©2)

whereQ, is the ultimate end bearing capadity,N;, N, areibga@apacity factors; is
the cohesion interce, is the effective overburdiessure at the base level of the pile,
Y is the effective unit weight of the bearing soiltla¢ base level, an is the width or
diameter of the shaft at the base level. The bgarapacity factors are dependent on the
internal friction angle of the soil. These paraangthave been interpreted from pile load
tests and published by several researchers ingubenzaghi (1943), Meyerhof (1963),
Berezantsev (1961) and Vesic (1963 and 1972). eTéld illustrates the bearing capacity
factors vs. internal friction angles proposed lfedent researchers.

For cohesive soils, the cohesive intercept maynberpreted as the undrained
shear strength of the sod<S,). Also, the ternmil/ 2VBN; can be neglected because the
width of the pile is relatively smaller than contienal foundations. Therefore, the

general end bearing capacity formulation takeditta¢ form of:

Q.=(9s) A (6.3)

6.3.2 Vesic’'s Method
Vesic (1970) proposed the end bearing capacity dtarbased on the expansion
of cavities theory which is related to the eartbgsure and effective stresses in soil. The

end bearing capacity of Vesic is as follows:

Q=|cN+oy N | A (6.4)
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whereQ, is the ultimate end bearing capadty, is tterae normal effective stress at
the base level of the pildl,, N, are the bearing capdaitiors given in Table 6.3.The

parametersr, anid, are defined as:

] 1+ 2K /
Uo=[ OJ% (6.5)

3
K, =1-sing (6.6)
Whereqo' is the effective vertical stress at the baselK, is the coefficient of earth

pressure, ang is the internal angle of friction.e Bearing capacity factors are defined

as follows:
N = (N, -1) cotg (6.7)
R 3N’
N, = d (6.8)
1+ 2K

in which N; is the bearing capacity factor presentgd/bsic. The values ON; based

on the internal angle of friction are given in Talbl3.

6.3.3 Janbu’s Method
Janbu (1976) proposed an end bearing capacity farimased on the internal

friction anglep and the parametgr  which is expr@ssehe form of:

Q.=(eN.+ g N A (6.9
whereQ, is the ultimate end bearing capacify, is thiectfe vertical stress at the base

level, and\_, N’; are the bearing capacity factors givehahle 6.3.The bearing capacity

factors are estimated by Janbu as:

N = (N, -1) cotg (6.10)

N, :[tan¢7+(1+ taf qo)mT exp @ tap) (6.11)
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in whichy is an angle defining the shear surface aroungbitedip. The angley ranges

from 60° for soft clays to 105°degrees for denselsa

6.3.4 Meyerhof's Method
Meyerhof’'s method to estimate the end bearing dgpawludes two formulae
which are used to calculate the bearing capaditiesohesionlessand cohesivesoils.
These equations are shown below.

For cohesionless soils

Q, = (00' N;) A< (50N, tang) A (6.12)
For cohesive soils
Q.=(aN:) A (6.13)
with
N; =(N;,-1) cotg (6.14)

whereg,is the undrained cohesion. The values of the bgacapacity factorN; are

plotted in Figure 6.1.
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Figure 6.2 Variation 01N; with internal friction angleg.
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The end bearing capacity formulation proposed byl€and Castello (1981)

which is only used focohesionless soils defined as follows:

Q.=(aN;) A

(6.15)

whereQ.is the ultimate bearing capacity, is the effective vertical stress at the base

level, and\l; is the bearing capacity factor given in Table 6.1.

Table 6.1 The bearing capacity factors for pilesahesionless soils

Theories Approximate values of,for Various Friction
Angles, @ (degrees)
25 30 35 40 45
Terzaghi (1943)
General shear 12,7  22.5 41.4 81.3 173.8
Localized shear 5.6 8.3 12.6 20.5 35.1
Meyerhof (1953) 38 89 255 880 4000
Driven Piles
Vesic (1972),= 60 20 27 40 59 85
Coyle & Castello (1981) 12 25 53 120 230
(Driven piles)
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6.4 Skin Friction Resistance

6.4.1 Alpha Method

The alpha methodumethod) of Randolph and Murphy (Randolph and Mwyrph
1963) relates the maximum skin friction to the @egof over-consolidation of the soil,
reducing the influence of the measurement of tleasshesistance on the calculation of
the bearing capacity. This method is based oridta¢-stress concept and, is only valid
for cohesive soils It is also known as the American Petroleum tasgi (API) 1991
method, because the APl method directly derivedctileulation of the skin friction in
cohesive soils from the-method. The ultimate skin resistance based om-ttmethod is

defined as:

Q =(as) A (6.16)
wherer is the adhesion factof,is the undrained shear strength of soil along tadts
and Ais the skin area of the shaft. Randolph and MurffRgndolph, et al., 1985)
defined then-function that varies with the normalized sheaersgth S, / ,, as shown in

Figure 6.4.
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Figure 6.4 Variations af with the normalized shear strength/ o,,.
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6.4.2 Beta Method
In the Beta methods¢method), Burland (1973) proposed a calculationhoetfor
the skin friction resistance along a shaft for bodhesiveand cohesionlessoils. This
method is based on the total-stress concept ansl thee coefficientf as a primary
parameter which is calculated from lateral earbspure and the friction angle of soil.
The skin friction capacity of a shaft based on flamethod is calculated as

follows:

Q, =(fo,) A (6.17)
whereQ, is the ultimate skin friction capacity, is the vertical effective stress at
measured point, aris the total skin area of the shaft. THhecoefficient can be
estimated for cohesive and cohesionless soils udifigrent methods. For cohesive

soils, the formulation for estimating tRecoefficient is as follows:
B =K, tand (6.18)
in which
K, =1-sing(for normally consolidated clays)

and

K, = (1- sing) VOCR(for over consolidated clays)

whereK,is the coefficient of lateral earth pressurés the friction angle between soil and
pile,@ is the internal friction angle of soil, and OCRhg over consolidation ratio of the
clay. The friction angle between pile and sdjlis dependent on the type of pile and the
internal friction angle of soilp. For different pile types, it is suggested to theevalues
of 6 given in Table 6.2 (U.S. Navy 1986).

For Cohesionless soils, different values ®fwere suggested by different

researchers based on the pile load test data. éWledl (1974) suggested values/fof
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ranging from 0.15 to 0.35. Meyerhof (1976) sugeestvalues ranging from 0.44 to 1.2

as shown in Table 6.3.

Table 6.2 The friction angle between a pile andlisased on the pile type

Pile Type Friction anglej (degrees)
Steel 20 degrees

Concrete Yagp

Timber Yagp

Table 6.3 Theg-coefficient for cohesionless soils based on tiermal friction angle

-coefficient Internal friction anglep (degrees)
0.44 28
0.75 35
1.2 37
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6.4.3 Lambda Method
The lambda methodi\{method) which is used for the calculation of skintion
resistance ircohesive sadl was first presented by Vijayvergiya and Focht7@)9 This
method is founded on the effective stress conc8atsed on the available pile load test
data in cohesive soils, the lambda concept exmese average skin friction as a
percentage of the average undrained shear stramgthhe effective overburden stress.

The skin friction capacity based on thenethod is as follows:

Q. =4 (5—V' ¥ 2§U) A (6.19)
whereQ, is the ultimate skin friction capacitys the friction capacity coefficieng, is
the average effective vertical stress for depthpibé embedmené, is the average
undrained shear strength for depth of pile embedmdine empirical factok can be

obtained from Figure 6.5.
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6.5 Limitations of Analytical Methods

The formulas for estimating the end bearing cagaid skin resistance of single
piles may not be used for all types of soils. Tihetations for the calculation methods
for the end bearing capacity of piles are showmTable 6.4. The limitations for the

calculation of skin resistance of single pilessttewn in Table 6.5.

Table 6.4 The end bearing capacity calculation oagh

Calculation Method for End Bearing Capacity Cohekdss Soil | Cohesive Saoll
General formula Yes Yes
Vesic's method Yes Yes
Janbu’s method Yes Yes
Coyle & Castello’s method No Yes
Meyerhof's method Yes Yes

Table 6.5 The skin friction resistance calculatioathods

Calculation Method for Skin Friction Resistance €sibnless Soil| Cohesive Soll
a-Method No Yes
B-Method Yes Yes
A-Method No Yes
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6.6 Finite Element Analysis of Single Piles

This section outlines the procedure for analyzimg lbad capacity of single piles
using the finite element package ABAQUS. Two exaspare chosen for the static
analysis of piles embedded in clay. In the firshraple, the pile is installed in a single
layer of stiff clay whereas in the second examples embedded in three layers of clay
that is ranging from soft to stiff. The analyses performed with and without elements.
The objectives of these examples are (1) to fimdatkial load capacity of single piles in
clays under undrained conditions and; (2) to ingest the effect of the soil-pile
interface on the load capacity of the pile.

The pile elements are modeled using solid continuelements. The soil
elements are modeled using the coupled displaceamehpore water pressure elements
as explained in Chapter 4. The constitutive bedram the pile is assumed elastic. The
soil is modeled using an appropriate elasto-plasiitstitutive model which is discussed
in Chapter 5. The interface between the soil atelglements is modeled based on the
master-slave contact algorithm that is describeatiefollowing section.

The solution procedure is as follows: (1) The getwynef the model is created,;
(2) the material properties are entered; (3) théefielement mesh is generated; (4) the
interaction surfaces are selected; (5) the boundanglitions are applied; (6) the initial
conditions are entered; (7) the loading and tineg@ng are entered and; (8) the model is
solved. The results obtained from the analysesliareissed at the end of each numerical

application.
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6.7 Soil-Pile Interface Model

The use of continuum elements in a finite elemeatyasis prohibits the relative
movement of a pile element with respect to the aadja soil element at the soil-pile
interface. Due to the compatibility of displacenseat the nodes, the soil and adjacent
pile element are forced to move together. On therchand, the restriction of the relative
movement at the interface creates very large stte@ins. Hence, the appropriate finite
element modeling of the soil-pile interface becomesemely important.

To fully represent the pile behavior at the inteefathe interface elements are
often used in finite element analysis to model #w@l-pile boundary. The major
advantages of using interface elements are (1)frtbigonal behavior at the soil-pile
interface is fully represented in the model and;t(@ differential movement of the soil
and the pile (i.e., slippage) is allowed.

In the soil-pile interaction problem, the pile eklemts are assumed to be rigid and
the surrounding soil is deformable. The surfacthefpile elements which are in contact
with the soil elements at the interface are seteatethe “master surface”. The surfaces
of the soil elements at the interface are seleagtslave surface”. These surfaces are
called the contact pair in ABAQUS. The contactr papresenting the soil-pile interface

is shown in Figure 6.6.
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Figure 6.6 The representation of pile-soil inteefat ABAQUS.
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The shear behavior between two surfaces is detiyethe Coulomb frictional
law. The Coulomb friction model relates the maximallowable frictional (shear) stress
across an interface to the contact pressure bettWeegontacting bodies. The model

specifies the shear behavior in terms of normaltandential components as follows:

Tei = HP (6.20)
wherer, is the critical shear stress at contact surfacethe coefficient of friction and,
p is the contact pressure between two surfaces.

The Coulomb friction model states that two contagtsurfaces can carry shear
stresses up to a certain magnitude across thenfage before they start sliding relative
to one another. This state is known as stickirige Toulomb friction model defines this
critical shear stresq,; , at which sliding of the surfaces starts as aifsamf the contact
pressure,p, between the surfaces. In other words, the cantasurfaces will not slip
until the shear stress across their interface sghal critical frictional shear stresg,; .
The solid line in Figure 6.7 summarizes the behawviothe Coulomb friction model.

There is zero relative motion (slip) of the suraeéhen they are sticking.
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Shear
stress
Slipping

» Slip

Figure 6.7 Contact frictional behavior for slippiagd sticking.

The contact algorithm employed in ABAQUS is desedhin a flow chart as
shown in Figure 6.8. The algorithm can be sumnedres follows:
1. Determine the state of all contact interactionschgcking whether each

slave node is open (clearance is greater than perolpsed(clearance is

equal to zero) at the beginning of each increment.
2. Apply a constraint for each closed slave nodeis &till closed or remove

the constraint if the contact status of that nalehanged from closed to

open. Determine whether the closed node is stickirsliding.
3. Perform an iteration to calculate the contact ctimigs at each slave node
After updating the contsiate, check the

after constraint checks.
equilibrium of forces and/or moments for that insat.

4. Check the state of contact pressymeand the clearancé, at each slave
node. If the contact pressure becomes negatiee taf iteration, then the
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status of contact at that slave node is changed fodosed to open”. On
the other hand, if the clearance becomes negativeeo after the
iteration, then the status of contact at each m@dbanged from “open to
closed”. In either case, the status is defined'sasere discontinuity
iteration” and the equilibrium is not checked.

5. Update the contact constraints after the firstatien followed by the
second iteration. Repeat the iteration procedut tlhere are no changes
in the contact status.

6. The last iteration is called the “first equilibriurteration”. After this
iteration is completed, check the normal equilibrifor convergence.

7. Repeat the entire process until the convergenaeheved.
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Figure 6.8 The master-slave contact algorithm.
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6.8 Numerical Applications

6.8.1 Load Capacity Analysis in Stiff Clays

A cylindrical pipe pile with a diameter of 1 m aadength of 20 m is installed in
a clayey deposit as shown in Figure 6.9. The igileertically loaded under undrained
conditions. The pile is assumed to be very stithvan elastic material behavior. The
clay is considered to have an elasto-plastic nateehavior represented by the Mohr-
Coulomb model. The pile is modeled using a YoumdtslulusE=20 x 16 kN/m? and a
Poisson’s ratioo = 0.15. The soil is modeled using an elasticligiastic constitutive
model with the Mohr-Coulomb yield criterion. Théagic properties of the normally
consolidated (NC) clay is represented by a YoumgslulusE=1.0 x 16 kN/m? and a
Poisson’s ratior = 0.49. The Mohr-Coulomb parameters of the ci@y a = 100 kN/rh
andp=26°, wherec is the cohesion andp is the internal angle of friction. The
unconfined compressive strength of the stiff claygi=100 kN/nf. The saturated unit
weight of the clay igsa= 18 kN/n?. The coefficient of earth pressure at resjs 1.
The initial void ratio is defined as, = 1.0. The coefficient of friction between the
concrete pile and the soil is calculatedfas 0.35 using thg-method. The material
properties of the NC clay and the pile are sumnredrin Tables 6.6 and 6.7, respectively.

The finite element mesh shown in Figure 6.9 is gated by the commercial
finite element packagBAQUS/Standard A two-dimensional axisymmetric finite
element model consisting of 1131 eight-noded elesmenused for the analysis of the
problem. The pile has a diameter of 1 m and atten§20 m. The whole model has a
width of 100 m and a height of 55 m. One half lo& tmodel is analyzed due to
axisymmetry. The pile is modeled with eight-nogdeswammetric, quadratic displacement
elements (CAX8) whereas the soil is modeled witisyarmetric, eight-node biquadratic
displacement and bilinear pore pressure elemenfs8PAelements. These elements are

available in theABAQUS/Standardlement library. The CAX8P element is similathe
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CPES8P element which is defined in Chapter 4. Taetact pairs for the soil-pile
interface are represented by a master-slave digorit

The boundary conditions consist of restricting bottrtical and horizontal
movements on the base of the mesh and horizontaéments on the right hand side of
the mesh and along the axis of symmetry. The tgpdf the pile is modeled by applying
increments of vertical displacements on its toptotal vertical displacement of 0.04 m
on the pile top is applied with an increment of0 On/s.

The initial stresses are calculated using the atdr unit weight of clay
Y =18 kN/nfand the initial void ratie, =1.0. The initial effective stress in terms of

the depth of the clay layer, z, can be defined as

0, = [Veu Vil (2~ %) (6.21)
in which y, is the unit weight of water and the reference depinowing that the depth

of the model iz = 55 m, the initial effective stress in the claydr is calculated as:

0, =[Vea~ V(2 3)
=[ 18 (kN/nt }- 10 (kN/m }( 55 m X
= 440 kN/M

The initial pore water pressure can be expressed as

p=y,(z-2) (6.22)
wherey,, is the unit weight of wateg is the given depth and,is the reference depth.
Substituting the depth and the unit weight of watehe formulation yields

P=Vu(z-2)
=10 (kN/m* ){ 55 m- §
=550 kN/nt

The initial effective stress and the pore watersguee in the finite element model are

plotted in Figure 6.5.
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The problem is run in two steps: (1) the geoststip, and (2) the static analysis
step. In the first step, the geostatic state efgfoblem is defined. A geostatic state is a
steady-state equilibrium configuration of the uhdised soil or rock body under
geostatic loading. In this step, thesitu loads are defined (i.e., the surcharge, earth’s
gravity). The onlyin situload in this example is the earth’s gravity actorgthe soll
layer. Under the GEOSTATIC option in ABAQUS, theagtational acceleration is
defined as 9.81 N/kg in the downward direction.tha second step, the transient coupled
pore pressure/effective stress analysis is carriedt wusing the SOILS,
CONSOLIDATION option with an automatic time stepgin The UTOL parameter
which controls the accuracy of the time integratimehosen as 5.0 x ¥okN/m” This
parameter specifies the allowable pore pressunegehper time step. If the pore pressure
change per time step is greater than the define@lUgarameter, the program will quit
the analysis, otherwise it will complete the anilyat the end of the final time step. In
this example, a relatively large UTOL parametesetected to avoid any interruptions
due to sudden pore pressure changes during thgsanalhe initial time step is selected
asti= 1.0 x 10’ s. The total time is defined &s= 25 s. The minimum and maximum
values of time steps are chosen as 1.0°%sH2 and 2.0 s, respectively.

In the first analysis, it is assumed that theneasontact between the pile and soil
elements along the shaft of the pile. In otherdspithe pile elements are perfectly
bonded to soil elements along the pile-soil integfaln this analysis, the displacement is
applied gradually on the pile top and the reactmnes at the nodes on the pile head are
calculated. Figure 6.11 shows the load-displacemantes for the total, shaft and end
bearing capacities at the pile top. These curvesoatained from the finite element
analysis and from the work of Potts (2001). Itlsar that the present work is consistent
with the published data (Potts, et al., 2001). el capacity of the pile is calculated as

7,100 kN. The ultimate shaft capacity is prediced,391 which is close to the capacity
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obtained from the simple calculation in which tHeafs area (62.83 fj times the
undrained shear strength of clay (100 kPa) reguitir6,283 kN.

In the second analysis, the soil-pile interfacelefined by master-slave contact
algorithm with the Coulomb frictional law. The d#$ of this contact algorithm are
explained in Section 6.5. The coefficients oftidn (f;) between the pile and soil are
selected as 0.35 and 0.50 for two different cas€sgure 6.12 illustrates the load
displacement curves for the cases in which ther@ifriction at the interface, fc=0.5 at
the interface, an®.=0.35 at the interface. The total load capacitigsthese cases are
calculated as 7,100 kN, 5,560 kN and 3,780 kN,aetypely. The differences between
these capacities occur because if the decreasw iskin friction resistance. As seen in
Figure 6.12, the total capacity decreases 22%hticase withi;=0.50, and 47% for the
case withf;=0.35. Figure 6.13 shows the total, end bearirdyskin friction capacities
for the case with.=0.35. While the ratio of shaft capacity to theat@apacity is 0.90 in
the case with no friction at the interface, thigoras 0.53 for the case with=0.35. In
other terms, the skin friction resistance is 53%hef total capacity as shown in Figure
6.13. The inclusion of friction between the piledasoil yields more conservative shaft
capacity estimation which is consistent with theattetical methods that are explained in
Section 6.3.The comparison of the theoretical mithend the finite element method for
shaft capacity estimation is given in the followsertion.

The end bearing capacities of the pile in this faawbare re-calculated using the
theoretical methods that are introduced in Secdh These methods are: General
Method, Vesic’'s Method, Janbu’s Method, Meyerhdflsthod and Coyle & Castello’s
method. The theoretical methods are compared wi¢hfinite element results. The
objective of this comparison is to investigate teéability of these methods and to
determine where the finite element method standsngnthose methods. The parameters
that are used to calculate the end bearing capsonith the theoretical methods are

given in Table 6.10. The calculations based osdheaethods are shown in Table 6.11.
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The end bearing capacities calculated from eaclhadeare compared with the finite

element method results as shown in Figure 6.15.eRAaebearing capacity calculated by
the finite element method is 2,003 kN. The closedtie to that is estimated by Coyle &
Castello’'s and Janbu’s methods which results i@ KN and 2,472 kN, respectively.

The Vesic’'s and Meyerhof's methods predict the leedring capacities as 5,860 kN and
3,864 kN, respectively, which can be interpretedesrestimation. On the other hand,
the general formula which predicts a capacity of KB underestimates the end bearing
capacity.

The skin friction resistance is recalculated byeg¢htheoretical methods namely
Alpha, Beta and Lambda methods which are describegiection 6.3. The parameters
and calculation methods are shown in Tables 6.1 Gfh3. The results from these
methods are compared with the finite element regualtFigure 6.16. The calculations
show that Beta method predicts the skin frictiosigtance as 1,709 kN which is close to
the result obtained from the finite element metHo@y7 kN. However, the Lambda and
the Alpha methods overestimate the skin frictiosistance as 2,777 kN and 4,084 kN,

respectively.
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Material Parameter Notation Value Units
General
Saturated unit weight Veat 17.0 KN/n?
Initial void ratio & 15 -
Permeability k 1.0x10° m/sec
Coefficient of Ko 1.0 -
earth pressure at rest
Elastic-Plastic
Modul E 1.0 x10 kN/nf
Poisson’s ratio v 0.49 -
Undrained shear strength S 100.0 KN/nf
Cohesion c 100.0 kN/nf
Angle of internal friction @ 26 Degree (°)

Table 6.7 Material properties of the concrete pile

Material Parameter Notation Value Units
General

Bulk unit weight Voulk 24.0 KN/
Elastic

Modulus of elasticity E 2.0x1d kN/nf

Poisson’s ratio N 0.15 -
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Figure 6.10 The initial stresses in the soil model.
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Figure 6.11 The load-displacement curve for the ehadgth no slippage.
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Figure 6.12 The comparison of load-displacementeziwith no slippage and with
coefficients of frictions 0.35 and 0.5 at the ifaee.
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Figure 6.13 The end bearing, skin resistance aadl¢apacities of a pile with coefficient
of friction 0.35 at the soil-pile interface.
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Table 6.8 The parameters used for the end beaajpgcdies of piles

Theoretical Methods Parameters
Ng* N* N,* Ko %
General Formula 9.0 - - - -
Vesic's Method 21.0 41.0 29.7 0.56 -
Janbu’s Method 9.18 16.78 - - 75.0
Meyerhof's Method 24.0 49.20f - - -
Coyle & Castello’s Method 14.0 - - - -
Table 6.9 The calculation of end bearing capacities
Calculation | Depth(m) | Effective | Average Unitend | Tip area | Ultimate end
Method stress, effective bearing (m?) bearing
0o (kPa) | stresspo (kPa) capacity (kN)
(kPa)

General 0.0 - - 0.00 0.00 0.00

20.0 - - 900.00 0.79 706.86
Vesic's 0.0 0.00 0.00 0.00 0.00 0.00

20.0 160.00 113.24 7460.61 0.79 5859.55
Janbu’s 0.0 0.00 - 0.00 0.00 0.00

20.0 160.00 - 3146.88 0.79 2471.56
Meyerhof's | 0.0 - - 0.00 0.00 0.00

20.0 - - 4920.00 0.79 3864.16
Coyleand | 0.0 0.00 - 0.00 0.00 0.00
Castello's | 200 160.00 - 2240.00 | 0.79 1759.29
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Figure 6.14 The comparison of end bearing capacitie
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Table 6.10 The parameters used for the theoretiegthods

Theoretical Methods Parameters

o B A Ko tarny
Alpha Method 0.65 - - - -
Beta Method - 0.20 - 0.56 0.35
Lambda Method - - 0.17 - -

Table 6.11 The calculation of skin friction resista

Calculation| Depth Effective Unit Skin Skin Ultimate Skin
Method (m) Vertical Resistance, | Area, Resistance,
Stress, s (kPa) A (mP) Q. (kN)
o (kPa)
Alpha 0.0 - 0.00 0.00 0.00
20.0 - 65.00 62.83 4084.1
Beta 0.0 0.00 0.00 0.00 0.00
20.0 160.00 31.82 62.83 1999.4
Lambda 0.0 0.00 0.00 0.00 0.00
20.0 160.00 61.20 62.83 2777.1
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Figure 6.15 The comparison of skin friction resise
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6.8.2 Load Capacity Analysis in Layered Clays

This example considers the finite element analgtia single vertical pile under
axial loading in layered clay. A 1-m in diametegjidrical pile with an embedded
length of 20.0 m is considered. The surroundiray ¢ considered as 50.0 m in width
and 55.0 m in height with three different layefidhe symmetry permits to model half of
the cylindrical pile and the surrounding soil. votdimensional axisymmetric model is
chosen for the finite element analysis. The fietement mesh is shown in Figure 6.17.

The normally consolidated clay is modeled using theicker-Prager (DP)
constitutive model. The clay deposit is considewshsisting of three layers. The
undrained shear strength of the claygjs= 20 kPa on the top surface and increases at a
rate of 4 kN/m per meter from the top layer. The modulus oftalig of the clay isE =
30 x 10kPa on the top surface and increases 1.0°kPEDper meter with depth. The
angle of internal friction is constanp=12°. The DP constitutive model parameters are:
tanf = 0.3€ and d =1.69cwhere c is the cohesion of the clay for each layer. The
Poisson’s ratio is=0.4. The material behavior of the single pil@assumed to be linear
elastic with a modulus of elasticify= 30 x 18 kN/m?and a Poisson’s ratis=0.20. The
coefficient of friction between pile and soilfiss0.15. The material properties of the clay
layers and the concrete pile are summarized ineBabi8 and 6.9.

The soil strip is assumed to have a rigid, impetrteeand smooth base. Neither
horizontal displacements nor pore water flow i©wld on the vertical sides. Free
drainage is only allowed along the top surface.e Pile loading is represented by
applying displacements on the pile head. The nodléke pile head are connected so
that a uniform displacement can be applied on the hpead. A total of 0.005 m of
displacement is applied on the pile head nodesgusmautomatic time stepping. The
initial stresses are applied on the model is shiowFigure 6.18.

The analysis is performed using a GEOSTATIC stdpe@d by the SOILS,
CONSOLIDATION step. In the geostatic step, a gational acceleration af = 9.81
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kN/m? is applied on all elements in the model. In tiéofving step, a total displacement
of 0.030 m is applied on the pile head in the doamts direction using an automatic
time stepping scheme under small-strain conditioftse displacements are applied using
an initial time step of=1.0 x 10 sec for a total duration 6£30 seconds. The automatic
time stepping is used during the analysis wherdithe steps are allowed to be between
Atmi=1.0 x 10" sec andAt,,=2.0 s. The tolerance on the pore pressure chiangey
increment is set using the UTOL option. The UTQ@ition is set to 5.0 x TOKN/m?. If

the maximum change in pore pressure at any nogie&er than UTOL, the increment is
repeated with proportionally reduced time stepentise the time step is increased.

Two analyses are run for the load capacity analysthe pile. The first analysis
takes into account the coefficient of friction beem pile and soil a§=0.15. The
ultimate pile capacity obtained from the load-dig@iment curve is2,090 kN as shown in
Figure 6.18. The shaft capacity is 941 kN, andeth@ bearing capacity is 1,149 kN. The
second analysis which is shown in Figure 6.19 mshased on the coefficient of friction
fc=0.50. The total, shaft and end bearing capadtiesalculated as 4,047 kN, 2,847 kN
and 1,173 kN, respectively. It is clear that while end bearing capacities in both cases
are close to each other, in the second analysiskinefriction resistance is almost three
times higher than the one in the first analysishisTis due to the increase in the
coefficient of friction. Increasing the coefficteof friction three times yields three times
higher shaft capacity. Thus, modeling the intesfand choosing the right frictional
parameters is the key in the load capacity analysgiles. Figure 6.20 compares the
total capacities for both cases reveals that thel tmpacity in the second case is two
times of higher than the capacity in the first case

For the comparison of finite element results, thadl capacity calculations are
performed using the theoretical methods. The patars used for the calculations are
given in Table 6.14. The results for each theoca¢tnethod are given in Table 6.15. The

end bearing capacities calculated from each metredplotted in Figure 6.22. The
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calculations show that Janbu’s method and Coylea&té€llo’s method predict the end
bearing capacity close to the finite element methegllts. Meyerhof’'s and Vesic's
methods overestimate the end bearing capacity fagtar of 2.5 and 4.5, respectively.
The general formula underestimates the end beadmgpst 30% less than the finite
element results.

The skin friction resistance is calculated usinge¢htheoretical methods. The
results from these methods are compared with thie felement results. The parameters
used in these five methods are given in Table 6.&e results are given in Table 6.23
for each theoretical method. The skin frictionisesces calculated from each method
are plotted in Figure 6.23. The calculations shioat the Beta method predicts the skin
friction resistance close to the finite elementimet However, the Alpha and Lambda

methods overestimate the skin friction resistanca factor of 2.0 and 3.0, respectively.
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Figure 6.16 The finite element mesh of the sok-pilodel.
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Table 6.12 Material properties of the normally aditated clay

Material Parameter Notation Value Units
General
Saturated unit weight Veat 17.0 KN/t
Initial void ratio & 1.5 -
Permeability k 1.0x10° m/sec
Coefficient of Ko 1.0 -
earth pressure at rest
Elastic-Plastic
Layer 1
Modulus of elasticity E 35.0 x16 KN/t
Poisson’s ratio v 0.20 -
Undrained shear strength S 40.0 KN/nf
Friction angle [0) 12 Degree (°)
Layer 2
Modulus of elasticity E 40.0 x16 KN/t
Poisson’s ratio v 0.20 -
Undrained shear strength S 80.0 KN/nf
Friction angle [0) 12 Degree (°)
Layer3
Modulus of elasticity E 45.0 x16 KN/t
Poisson’s ratio v 0.20 -
Undrained shear strength S 100.0 KN/t
Friction angle [0) 12 Degree (°)

www.manaraa.com



166

Table 6.13 Material properties of the concrete pile

Material Parameter Notation Value Units
General
Bulk unit weight Voulk 24.0 kN/n?
Elastic
Modulus of elasticity E 3.0x 10’ kN/nf
Poisson’s ratio N 0.40 -
Stress (kPa
0 100 200 300 400 500 600
O T T T T T 1
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20 +

-4 Effective Stress
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& 8
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Figure 6.17 The initial stresses defined in ABAQUS.
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Figure 6.18 The load-displacement curveffef.15 at the interface.
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Figure 6.19 The load-displacement curveffer0.50 at the interface.
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Figure 6.20 The load-displacement curve using faterelements with coefficients of
frictions 0.15 and 0.5 at the interface.
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Figure 6.21 The contour plot of (a) von Mises sess (b) pore water pressure.
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Table 6.14 The parameters used for the theoretietthods

Theoretical Methods Parameters

Ng* N* N,* Ko W
General Formula 9.0 - - - -
Vesic’'s Method 10.0 42.3 11.6 0.79 -
Janbu’s Method 2.66 7.81 - - 75.0
Meyerhof’'s Method 8.0 32.93 - - -
Coyle & Castello’s Method 8.0 - - - -

Table 6.15 The calculation of end bearing capacitie

Calculation | Depth(m) | Effective | Average Unitend | Tip area | Ultimate end
Method stress, effective bearing (m?) bearin_g
Qo (kPa) | stress, (kPa) capacity (kN)
oo (kPa)

General 0.0 - - 0.00 0.00 0.00

20.0 - - 900.00 0.79 706.86
Vesic's 0.0 0.00 0.00 0.00 0.00 0.00

20.0 140.00 120.59 5634.17 0.79 4425.06
Janbu’s 0.0 0.00 - 0.00 0.00 0.00

20.0 140.00 - 1153.57 0.79 906.01
Meyerhof's | 0.0 - - 0.00 0.00 0.00

20.0 - - 3293.24 0.79 2586.51
Coyleand | 0.0 0.00 - 0.00 0.00 0.00
Castello’s | 20.0 140.00 - 1120.00 | 0.79 879.65
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Figure 6.22 The comparison of end bearing capacitie
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Table 6.16 The parameters used for the theoretietthods

Theoretical Methods Parameters

o S A Ko tarny
Alpha Method 0.65 - - - -
Beta Method - 0.13 - 0.79 0.16
Lambda Method - - 0.17 - -

Table 6.17 The calculation of the skin frictionisésnce

Calculation| Depth Effective Unit Skin Skin Ultimate Skin
Method (m) Vertical Resistance, | Area, ResistanceQs
Stressg, 0s (kPa) A (mP) (kN)
(kPa)
Alpha 0.0 - 0.00 0.00 0.00
10.0 - 26.00 31.42 816.8
20.0 - 80.00 31.42 2513.3
3330.09
Beta 0.0 0.00 0.00 0.00 0.00
10.0 70.00 8.78 31.42 275.92
20.0 140.00 18.20 31.42 571.84
847.77
Lambda 0.0 0.00 0.00 0.00 0.00
10.0 35.00 19.55 31.42 614.26
20.0 105.00 45.05 31.42 1415.47
2029.73
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Figure 6.23 The comparison of skin friction resise
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6.9 Summary and Discussion

Load capacity analysis of a single pile is investiggl in this chapter using the
finite element method. The efficiency of the fenielement method is supported by
widely recognized theoretical methods. These metham@ employed to estimate load
capacities of single piles. The theoretical methtltht are used to estimate the end
bearing capacities are: (1) General Formula, (Zid/® Method, (3) Janbu’s Method, (4)
Meyerhof’'s Method, and (5) Coyle& Castello’s Methodhe estimation of skin friction
resistance (shaft capacity) of single piles is ggened using the (1) Alpha method, (2)
Beta method, and (3) Lambda method.

A non-linear static axisymmetric model which assansenall deformations is
developed for the finite element analysis. This elagimulates an axially loaded pile
which is embedded in a normally consolidated clapasit. The Mohr-Coulomb
plasticity model is used to represent the inelasticavior of clay. The soil pile interface
is modeled using contact pairs which complies it master-slave contact algorithm
defined in ABAQUS/Standard. The frictional intetian between soil and pile is defined
by the Coulomb frictional law. A transient coupleare pressure/effective stress analysis
is performed using an automatic time stepping seéhemSmall increments of
displacements are applied on the pile top underaimedd conditions until the pile is fully
mobilized.

Two numerical applications are carried out to eaterthe load capacity of single
piles in normally consolidated clays. The firstmerical application consists of a solid
cylindrical concrete pile with a diametBr= 1.0 m and length= 20 m embedded in a
thick homogenous stiff clay layer. The load capaeinalysis is performed with and
without interface elements. The analysis that &rs no interface elements predicts an
ultimate end bearing capacity of 710 kN, shaft capaf 6,391 kN, and a total capacity
of 7,101 kN which is consistent with the publisheata. The analysis shows that the

shaft capacity mobilizes first followed by the dvehring capacity. This is due to the load
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bearing mechanism of piles which proves that th@ieg load is carried first by the shaft
then the tip of the pile. The analysis with inte&d elements is modeled using two
different coefficientsf{ = 0.35 and; = 0.50) of friction at the soil pile interface. h&
total capacities are calculated as 5,559 kNffer 0.50 and 3,779 kN fdg = 0.35. The
decrease in the load capacities can be explaingdebgtecrease in friction at the soil pile
interface. It is examined that the model with nteiface predicts almost twice as much
load capacity as the model with interface. Thédielement results are also compared
with theoretical methods that are used to estirtteile load capacities. In regards with
the end bearing capacities, Coyle & Castello’s meétis found to be most conservative
followed by the finite element method, then Janbmisthod, then Meyerhof's method,
and finally Vesic’'s method. In respect to skirction resistance, the finite element is
found to be the most conservative method, followgdBeta, then Lambda, and then
Alpha. These comparisons confirm that modelinga@f pile interface is essential to
obtaining reliable results for the load capacitigfs piles. The second numerical
application is carried out using a three layer daposit for the load capacity analysis of
a single pile. The layers are modeled from softttid starting at the ground surface. The
end bearing capacity, skin friction resistance, #mal total capacity are calculated as
1,150 kN, 941kN, and 2,091 kN, respectively. Althbuhe strength of the solil at the pile
tip remains the same, the end bearing capacityedses almost 50 percent compared to
the first application. This outcome is obtainedaiese the stiffness of the clay at the pile
tip is almost 50 percent less than in the first atioal application. The skin friction
resistance is also found to be almost 50 percast & his result is attained because the
coefficient of friction is lower due to the lowearternal angle of the clay.

In conclusion, modeling of the soil pile interfasecritical to accurately compute
the shaft capacity of a pile. The results show tis of frictional contact between soil
and pile makes a significant difference in estimgtthe load capacity of piles. The

theoretical methods support the results obtaingdamumerical applications.
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CHAPTER 7
DYNAMIC ANALYSIS OF PILE DRIVING AND WAVE
PROPAGATION IN UNDRAINED SOILS

7.1 Introduction

The finite element method is a powerful tool to estigate the generation of
ground vibrations due to pile driving. It is besauhe stress waves generated by pile
driving are usually complex, and recorded signalsiet a combination of body and
surface waves (Attewell and Farmer, 1973) as shiowigure 7.1. When a hammer
strikes the head of a pile during pile driving, thgact energy is transmitted from the
hammer to the pile. This energy travels alongpitein the form of compressive waves,
called the primary body waves or P-waves (Goblal.etl976). A large portion of this
energy is used for advancing the pile, while tlet of the energy is transmitted to the soil
by means of two ways: (1) through the pile shafthia form of shear waves or S-wave
propagating on a cylindrical wave front; and (2)tla¢ pile toe in the form of P-waves
propagating on a spherical wave front. Anotheetgpwave is generated on the ground
surface which is called the surface or the Rayleuglve that propagates outwards from
the pile shaft around a circumferentially expandiaye front.

Generation of ground motion depends on many facteckiding (a) source
parameters (method of pile driving, energy, ané dipth), (b) the interaction between
the pile and the soil, and (c) the propagatiorhefwaves through the geological structure
at the site (Masoumi et al.,, 2008). Although simplumerical models may contain
valuable data on general tendencies of wave projpagat a site, they cannot take into
account spatial variations of soil properties. §hthese models may not produce
accurate and complete ground vibration records pbiat of interest. Hence, when
modeling pile driving and wave propagation in scal of these factors should be taken

into account carefully to increase the precisiothefoutcome.
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Interaction between Impact force
advancing S-wave and
reflecting P-wave

Pile
% i Ground surface

Energy
transfer
along pile A

Figure 7.1 The mechanics of wave propagation dumpact pile driving.
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In this chapter, a complete finite element modepisposed to simulate the
dynamic loading of a single pile and generated warepagation in soils. The proposed
model includes (a) geostatic stresses prior todyreamic analysis; (b) elasto-plastic
behavior of soil and; (c) shear slip at the pilé-sderface. The aim of this study is to
investigate the effect of major factors such as @assticity, pile penetration length and
hammer energy on the transmission of pile drivinduced ground vibrations. The
organization of this chapter is as follows: firste governing equations and the finite
element equations used for the quasi-static arsalysiporous media are summarized.
Then, the finite element modeling procedure inalgdihe special boundary conditions,
the constitutive law and the solution procedurettté finite element equations are
explained. Next, the finite element model devetbpe simulate pile driving induced
ground vibrations is implemented in two numerigaplecations. Then, the effect of soill
properties, pile penetration length and the vamatf hammer energy are investigated.
Finally, the ground vibrations at different deptre studied followed by the summary

and conclusions.
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7.2 Governing Equations

7.2.1 Balance Equations
The balance equations consisting of mass balantdirsgar momentum balance
equations are explained in Chapter 3. In this draphese equations are revisited, and
they are combined with an elasto-plastic constitutaw. The balance laws for a fully
saturated two-phase mixture can be written in gdrierm as

(1) Mass balance equation:

D :
Tpa*pgdlv VT =p,€(p) G=s,w (7.1)
(2) Linear momentum balance equation:

dive, +p,(g° ~a)+p, | & (v )+ P |=0  @=sw, (7.2)
wherea is the indicator of the phase=s, w) wheres andw refer to solid and fluid
respectively; D /Dt is the material derivative following the motion afphase;
0, =n°p7is the macroscopic mass density whefe=dV“?/ dVis the fraction of the
representative element volumedV occupied by the a-phase subjected to
Z n®=n°*+n"=(@0-n)+n=1 where n is the porosity; v anda”are the spatial
\C/,:Ivtv)vcity and acceleration vectors, respectivelly;is the gravitational force per body

mass;o, =/°0” is the partial (Cauchy) stress tens@? is the exchange of momentum

between two phases angf;(0) is the exchange of mass between two phases.

7.2.2 Field Equations
For the computation of mass balance equations assumed that the sum of mass

exchange is zero as follows:

Y £,& (V) =0 (7.3)

a=s,w
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Based on this assumption, the mass balance equftioeach phase can be
defined after the general form (Eq. 7.1) in terrhemacroscopic quantities. For the solid

phase, the mass balance equation is:

D°po. .
S+ pdivv®=0 7.4
SR (7.4)

For the fluid phase, the mass balance equation is:

D"p .
— W+ pdivv'=0 7.5
Dt Py, (7.5)

In Chapter 3, under the “Kinematics Equations” ieect the derivation of
guantities in the material and spatial coordingstesn are described in detail. Recalling
the material derivative of one phase with respeabther phase, the following relation

can be defined as follows:

Dfe of”

Dt ot

wheref ?(x,t)is any differentiable function in the-phase andD? /Dt is the material

+grad f* W” (7.6)

time derivative operator for a prescribed ph@ase The solid and fluid phases can then

be combined and simplified using the above relatigmas follows:

l_n DSpS+_n DS,OW
p, Dt p" Dt

+ L div (np"v™)+ divv=0 7.7)
0

wherev™ =v" -v°®is the relative velocity.

The fluid flow in the porous media can be explair®dDarcy’'s Law which
relates the seepage velocity to the porosity ofntindure, permeability of the material,
viscosity of the fluid, pore-fluid pressure and sa$ the flowing fluid. For a two-phase

mixture, Darcy’s law can be defined as follows:

W S k W,
n(v -V)=ﬁ(-9fad p+0'9) (7.8)
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wherek is the permeability tenso,is the dynamic viscosity, arlis the pore-water
pressure.

For the derivation of the linear momentum balarougations it is assumed that (a)
the mass exchange between each phase is not allaweedb) the sum of interaction

forces between each phase is zero as defined foltbeing:

Y. P& (pV)=0 (7.9)

a=s,w

> 0,07 =p.p°+p,p"=0 (7.10)

Based on the general form of the linear momentulanica equation, Eq. (7.2),
the balance equations in terms of macroscopic gientan be defined for each phase.

For the solid phase, the linear momentum balanoatem is:

dive ,+p,(g°-a%)=0 (7.11)

For the fluid phase, the linear momentum balanceon is:

dive,+p,(9"-a")=0 (7.12)
The principle of effective stress of Terzaghi ddteat the total stress in a porous
medium consists of effective stresses which areczsed with the solid skeleton and the
pore-water pressure which is associated with tire flaid. In this study, a modified
version of this principle is used after Bishop (2R5Under fully saturated conditions, the
principle of effective stress can then be defingd a
¢ =c+mp (7.13)
where ¢'is the effective stress (positive in tensiom)is the total stresspis the pore-
fluid pressure andm is a vector defined as={1, 1, 1, 0, 0, O}.
For the derivation of the mass balance equatias,assumed that (a) the motion
occurs under isothermal conditions; (b) the pommeslium is fully saturated and; (c) the

grain material is incompressible and the fluid asnpressible. To get the final form of
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mass balance equation, the mass balance equatiothe isolid and fluid phases are

combined with Darcy’s Law and the quantities anedified as follows:

00/ K g rawso 1o
ot %

where Ky, is the bulk modulus of pore fluid.
To obtain the final form of the linear momentumarade law, the equations for
solid and fluid phases, Eqs (7.8) and (7.9), arelioed as follows:
dive+pg=0 (7.15)
whereg is the body force andy and p are the averaged total stress and mass density,
respectively, which can be defined as
c=1-n)e*+nc" (7.16)
p=@1-n)p>+no" (7.17)
Furthermore, introducing the principle of effectisteess, the above equation can

be reduced to the following form:

div (¢’ +mp)+pg=0 (7.18)

7.2.3 Weak Form and Finite Element Equations
The non-linear behavior of a material can be defif®ey an incremental
constitutive form with a tangential modulDs dependent on the effective stress, and
strain, € , as follows:
do’ =D, de (7.19)
in which
e=0"u (7.20)

where[" is the differential operator defined as:
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9 9 o 9 9 |
0Xx dy 0z
0’=s0 — 0 9 oi (7.21)
ay 0Xx 0z
0 9 o0 9
0z ox 0y

The initial conditions specify the full field of gplacements and water pressures at

timet=0 as follows:

u=u, p=p, inQand o (7.22)
where Q is the domain of interest and is its boundary. The imposed boundary

displacements and water pressures are as follows:

u=t onf, (7.23)
p=pH onl,
I'e=t onl, (7.24)
k T
{ﬁ(—grad p+pr)} (h=qonl, (7.25)

where the matrix is related to the unit normal vector= {nx,ny,nz}T by

>
o

x

g
0

]
<

n

N

(7.26)

>
N

>
<

5 o5 oo
o)

N
X
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The weak form is recalled from Chapter 3 and wmitis:

w

JQ{{EJG—UT pg} +{T3Kl D+E,fﬂ£(—grad pt p"g)+ ' sH o)
w (7.27)
=] utdr+ jrpr) % dr

where
t={t,t,t}" (7.28)

is the surface traction vector,

.
q:{pwﬂh(grad p—,og)} h=v'[h (7.29)

W

is the prescribed outward flow per unit area amrd{nX n, ,nZ}Tis a vector of direction
cosines for the unit normal fa
For an element witm displacement degrees of freedom andpore pressure

degrees of freedom, the spatial approximation eaddfined in the form of:
0=> N,u =N,u (7.30)

P=2N,n=N,p (7.31)

Applying the Galerkin method to the final form oflance equations, the

following finite element discrete form is obtained:

Myi+[BTg'dQ-Qp= f, (7.32)
Q
Qu+Kp+Sp=f, (7.33)
in which
M, = [ NIoN dQ (7.34)
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Q= jQBijde (7.35)

n
s=|_ NG Np 40 (7.36)

k

— T

K., _jQBpEBp dQ (7.37)
fu :jQijg dQ +erjt a (7.38)
=[BT K pgan+ [N o 7.39
_.[Q plu_pg ,[r pﬁ ( ' )

where M is the mass matrix for the solid pha§g;is the coupling matrixS is the
compressibility matrixK. is the permeability (flow) matrix;" is the elemental vector of

external forces, ani is the fluid supply vector.

7.3 Finite Element Modeling Procedure

7.3.1 Finite Element Mesh and Element Size

The dynamic loading of a single pile is simulated the analysis of pile driving
and wave propagation in soils using the finite eletrmethod. A precast concrete pile
with a circular cross-section is chosen for thimidation. The pile is considered to be
fully embedded in soil. Four-node axisymmetric dpadic displacement elements are
used to represent the pile; whereas four-node y@xeetric, biquadratic displacement
and bilinear pore pressure elements are selectegtesent the soil elements.

The element sizes are chosen very carefully, becamsvibration analysis,
choosing the right element size for the finite edais is essential to capture the motion of
waves accurately. The common practice is to chaasglement with a minimum length
of A, /6, where /A is the shear wavelength. The shear wavelengthbeadefined in

terms of shear wave speed and time as follows:
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A=At (7.40)

ez |—2 (7.41)
p=np,

wherec; is the shear wave velocityt is the time stepG is the Lamé’s constam,is the

with

porosity,p andp,, are the densities of saturated soil and watepets/ely. The element
sizes are selected based on the material propemtidee numerical applications. The
finite element model used for this study is showrFigure 7.3. The detail views of the

axis of symmetry and the pile tip are shown in Fegn.4.

7.3.2 Analytical Rigid Surface
In an axisymmetric finite element model, to alldve tpenetration of the pile into
the soil, the defined nodes on the axis of symm&htiquld be set free of constraints. To
remove those constraints and allow the soil notiiseacontact to slide on the surface of
the pile elements, it is suggested to define athyacal rigid surface 1 mm away from the
axis of symmetry as shown in Figure 7.7. This niadeechnique allows is introduced
as a rigid tube in an earlier study (Htgel, et2008). The rigid analytical surface that is
available in ABAQUS, is in frictionless contact tvithe pile and soil elements. This
technique allows the pile to slide over the riginiface, and the soil elements to separate

from this surface during the penetration of the pil

7.3.3 Atrtificial Non-Reflecting Boundary
In the analysis of stress wave propagation in sdiue to pile driving, the
reflection of waves from the far boundary causemiicant problems. When these
waves bounce back from the boundary, they mix withprogressing waves. Thus, the
magnitudes of the waves calculated by the FE packagome inaccurate. To minimize

the effect of reflecting waves on the results, ohée options is to define a sufficiently
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long finite element mesh. A longer mesh will badi consuming and it is difficult to
determine whether the mesh is sufficiently long.

Another option would be the use of infinite elenseas boundary elements to
minimize or prevent the reflection of stress wawethe finite elements. A finite element
mesh of finite end infinite elements representiog, pile and the far field is shown in
Figure 7.1. However, the use of infinite elemdmiags significant difficulties by itself
when defining the geostatic step in the dynamit amalysis. It is because static forces
such as the self-weight of soil cannot be appliediinite elements, because the
formulation of the damper is based on the resigtanwelocity, not displacement. When
static forces are applied to establish an equilibristate, the relative displacement of
finite elements with respect to infinite elementedmes excessive resulting in inaccurate

results as shown in Figure 7.2.

www.manaraa.com



189

Figure 7.2 The finite element mesh of soil and pdenbined with infinite element.
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S, S22
(Avg: 75%)

+3.712e+02
[ +3.087e+02

+2.462e+02
+1.837e+02
+1.211e+02
+5.864e+01
-3.864e+00
—6.637e+01
-1.289e+02
-1.914e+02
-2.539e+02
-3.164e+02
-3.789%e+02

Figure 7.3 The excessive relative displacemeninitefelements after geostatic loading.
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Another alternative to damp out the excessive Wibma in a finite element model
is to define an artificial boundary which damps theg entering waves and acts like a
dashpot systems. Such an artificial boundary whwels previously introduced in the
literature (Liu, et al., 2003) aims to minimize ttedlection of stress waves from the far
boundary. A modified version of this techniqueingplemented in our finite element
model to avoid the wave-reflection problem. Fag tmplementation, a region in 50 m
width is added to the far end of the model. Tkgion is divided into five sections with
varying damping ratios as shown in Figure 7.8. Taenping ratios are defined as
gradually increasing from the first section to kst one. The procedure to determine the
damping parameters is as follows:
1. Run the analysis without any artificial boundaryduion.
2. Obtain time history of the vertical velocity magrdes for the furthest
node on the surface of the model before enteriagthficial boundary.
3. Find velocity magnitudes in the frequency domaimgghe Fast Fourier
Transform (FFT) algorithm. Obtain two frequencyues for the motion.
4. Set the damping ratig=0.7 and;=0.8. Find Rayleigh damping factars
andp, substituting the frequency values found in Stept8 the equation

below:
1l a ,
J :_[_+,Ba)} with w= 277f
2| w

where( is the damping ratiay is the mass-proportional Rayleigh damping
factor, § is the stiffness-proportional Rayleigh dampingtdaco is the
cyclic frequency anflis the frequency of the motion.
5. Define gradually increasing and p values for each section using the
linear interpolation method.
Using this procedurey andf are chosen for different sections as shown in&abl

7.3. To test the artificial boundary, the contplats of the vertical velocities are plotted
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at different times with and without the artificiabundary in Figure 7.4. It is observed

that the waves bounce back from the boundary inrelgelar model.

However, in the

model with the artificial boundary, the waves disge gradually and only a very small

portion of waves reflect.

Table 7.1 The Rayleigh damping factarandg for different sections

Section Name a (1/s) S (S)

s1 0.5 5.0x10
S2 1.0 5.0x10°
S3 5.0 5.0x10
S4 15 10x10°
S5 20 20x10°
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Axis of |
symmetryi Applied Artificially damped non-
+ force reflecting boundary
& (@) . Ve
Concrete pile lz (m)

(b)

Figure 7.4 Schematics of the finite element model.
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Axis of J

symmetry™ 10-mm gap
- Pile element
P (CAX4R)
P
Analyical .
rigid surface
(rigid tube)
(@)
Axis of y'/‘ Concrete pile
symmetr i
Clay
Rounded
pile tip

(b)

Figure 7.5 The detailed views of (a) the analytiggil surface and (b) the round pile tip.
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t=0.1s

t=10s

(@ (b)

Figure 7.6 The contour plots of vertical velocitiega) the original model and (b) the
model with artificial non-reflecting boundary.
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7.3.4 Constitutive Law
A modified version of the Mohr-Coulomb elasto-plastonstitutive model, which
is available in ABAQUS is assumed to describe thlealvior of soils in this chapter. The
Mohr-Coulomb model in ABAQUS is an extension of tbkssical Mohr-Coulomb
failure criterion based on the work of Menétrey amiliams (1995). The detailed

description of this model is explained in Chapter 5

7.3.5 Solution Procedure

The finite element software ABAQUS offers two dir@éategration methods for
the solution of non-linear dynamic problems. Thase the implicit and the explicit
methods that are used for linear and nonlinearlpna®. In this study, the implicit time
integration method is chosen because the solutiotramsient analysis of soils in
ABAQUS can only be obtained using the implicit neth(ABAQUS Manual, 2008).
The implicit method uses a fixed or automatic timerement based on the Newton-
Raphson iteration scheme for the solution of naedr problems. The internal element
forces before and after each time increment arepoted using the dynamic equilibrium.
The solution for the nodal accelerations is deteedi with iteration as opposed to
advancing the kinematic state from the previousinrke explicit method.

The general direct-integration method provided ipadus/Standard, called the
Hilber-Hughes-Taylor operator, is an extension loé trapezoidal rule. The Hilber-
Hughes-Taylor operator is implicit which means ithiggration operator matrix must be
inverted, and a set of simultaneous nonlinear dymasquilibrium equations must be
solved at each time increment. This solution isedieratively using Newton's method.
The principal advantage of the Hilber-Hughes-Tagperator is that it is unconditionally
stable for linear systems; there is no mathemadliiwed on the size of the time increment
that can be used to integrate a linear system. uAeconditionally stable integration

operator is of great value when studying structayatems because a conditionally stable
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integration operator can lead to impractically dmaine steps and, therefore, a
computationally expensive analysis.

The implicit time integration procedure uses anomgtic increment strategy
based on the success rate of a full Newton itexagolution method as follows:

Au,,, =0u, +K*OF, - ) (7.50)
whereK, is the current tangent stiffness matrixjs the applied load vectot, is the
internal force vector, andu is the increment of displacement. The subscnpsd 1
indicate the step orders at time stgpandt,.1. For an implicit dynamic procedure, the
algorithm is defined as:

MU, +(1+a)Ku ,, —aKu  =F . (7.51)
whereM is the mass matriX is the stiffness matrix; is the vector of applied loads and
u is the displacement vector. The approximationsthe displacement and velocity

vectors can be written as follows:

um=un+Atun+At2K%—,8jun+ﬂu m} (7.52)
and
Uy = U, + At (1= p) U, +p00, | (7.53)
with the parameters
1 1 1
==(1-a?%), y==-a, -=<as 7.54
o 4( ) 2 3 ( )

where 0=-0.05 is chosen by default in ABAQUS as a smathgig term to quickly
remove the high frequency noise without havinggmificant effect on the meaningful,
lower frequency response.

An automatic incrementing scheme is provided fa with the general implicit
dynamic integration method. The scheme uses ashgif+esidual control to ensure an

accurate dynamic solution. The half-step residsigthé equilibrium residual error (out-of-
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balance forces) halfway through a time incremenhis half-step residual check is the
basis of the adaptive time incrementing schemehdf half-step residual is small, it
indicates that the accuracy of the solution is fagl that the time step can be increased
safely. On the other hand, if the half-step resida large, the time step used in the

solution should be reduced.

7.4 Numerical Applications

7.4.1 Pile Driving Problem of Ramshaw et al.

This problem consists of finite element analysiga ofynamically loaded bored-in-
situ pile which was tested on a site near MancheSte. The original problem has been
studied earlier by Ramshaw and her colleagues (1988 length of the pile is 21 m and
diameter is 750 mm. A 2.2 ton hammer was droppetbdhe built up instrument head
of the piles from a height of 1.2 m. The soil isdaled with pore pressure elements and
considered as linear elastic. The subsurfacecseasists of two layers. The top soil layer
(depth<10.5 m) consists of firm to stiff silty clayhe modulus of elasticity E, Poisson’s
ratio v and mass density of soil in this layer are 26x£(Pa, 0.35 and 1,970 kg/m
respectively. The modulus of elasticity E, Poissaatio v and mass density of solil in
the second layer (depth>10.5 m) are 50x24, 0.35 and 2,100 kg’nrespectively. The
pile is modeled with solid elements and consideaedinear elastic with a modulus of
elasticity E=30x18Pa, Poisson’s ratio=0.20 and a bulk unit density of 2,500 kd/m
The material properties of the soil layers andpite are given in Table 7.1.

The finite element mesh shown in Figure 7.5 is ¢gsed using
ABAQUS/Standard A two-dimensional axisymmetric finite element aebconsisting of
four-noded elements is used for the analysis ofptiedlem. Four-node axisymmetric,
guadratic displacement elements (CAX4) are usedntmlel the pile. Four-node
axisymmetric biquadratic displacement and bilinpare pressure elements (CAX4P)

elements are used to model the soil. The dimeasibthe whole model are selected as a
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width of 50 timesD and a height of 55 timed. The boundary conditions consist of
restricting both horizontal and vertical movementtee bottom of the mesh, and the
horizontal movement at the right side of the mesghrigid analytical surface is defined
1.0 mm away from the axis of symmetry. The hortaband vertical movement of this
surface is restricted. Non-reflecting boundarymedats consisting of high material
damping characteristics are defined for the lagt fiolumns of elements at the right hand
side of the mesh. The contact pairs for the stelipterface are represented by a master-
slave algorithm. The impact load which is appleedthe top of the pile is defined by a
forcing function representing a single hammer blRamshaw, et al., 1998). The
forcing function applied on the pile head is shawirigure 7.6.

The initial stresses are specified for particulades or elements, as appropriate.
The only initial condition defined in this problemthe initial values of the void ratie,,
at the nodes of the soil skeleton. The initial vaatio e, = 0.5 is defined for all nodes.
The equilibrium of the initial state requires edigtbment of the initial stresses. It is
important to establish the initial stresses colyedthe applied loads and initial stresses
should exactly equilibrate and produce zero deftioma. The initial stresses defined for
this problem are: (1) the initial pore pressyeand (2) the initial effective stresses,
The variation of pore pressure and initial effeetsiress are shown in Figure 7.7.

The reason for choosing this numerical applicai®no validate the proposed
finite element model with published data. Figur8 8hows the variation of radial
velocity with time at a distance of 5.5 m from theurce of vibration. The peak
magnitude is calculated as 6.29 mm/s at 0.10 sreslsethe measured peak velocity is
approximately 8.0 mm/s. The published data (Ramsled al., 1998) showed a peak
radial velocity of approximately 12.0 mm/s. This aeb did not include the friction
between the pile and the soil, and the self-weajlthe soil. The difference between the
present and the published results can be expldipee of soil-pile interface modeling.

Published data shows that at about 0.3 s, thelregliacities almost dissipate, however,
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after 0.4 s, the radial velocities increase agaliis is not monitored in the measured
data. The present work agrees with the measuréal dahe use of non-reflecting
boundary conditions enabled to model the soil elgmwith high damping ratios in the
far field. Hence, the present work shows thatgtaind vibrations dissipate after 0.4 s
agreeing with the measured data. The radial vésopbtained on the ground surface at
16.5 m from the pile are shown in Figure 7.9. Peeak radial velocity is computed as
2.3 mm/s at about 0.3 s. The measured data sh@awshie peak velocity is around 2.0
mm/s which is consistent with the result of thespré work. However, the published
data computed the peak radial velocities at abdutntim/s. This is due to the use of
special non-reflecting artificial boundary conditsoin the present model which takes into
account the material damping in the solil in thefi@d. In conclusion, the use of soil-
pile interface model and non-reflecting boundaryndibons enabled (1) to avoid
overestimating the peak radial velocities, (2) todel the ground vibrations with a high

precision in the far field.
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Figure 7.7 The finite element mesh of the model.
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Material Parameter Notation Value Units
Sail

Medium Stiff Clay Layer

Modulus of elasticity E 26.0 x16 kN/nf
Poisson’s ratio v 0.35

Dry Density Pdry 1970 kg/mq’
Dense Sand Layer

Modulus of elasticity E 50.0 x16 kN/nf
Poisson’s ratio v 0.30

Dry Density Pdry 2100 kg/mq’
Pile

Modulus of elasticity E 30.0 x16 kN/nf
Poisson’s ratio v 0.20

Dry Density Pdry 2500 kg/mq’
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Figure 7.8 The forcing function applied on the itad.

Stress (kPa)

0 500 1,000 1,500
0.00

10.00

20.00

30.00

—¢— Effective Stress
\ N
40.00 \ == Pore Pressure

50.00 \
60.00 \ \
70.00 \ \‘

NN

Depth (m)

Figure 7.9 The effective stress and pore pressateldition in soil at initial state.

www.manharaa.com




204

15.0

[N

o u  ©

o o o
1 1 1

Radial Velocity (mm/s)
o
o

-10.0 -

-15.0

= Present study

Ramshaw et al.

=== Measured data

0.0

0.2

0.4

Time (s)

0.6 0.8

Figure 7.1(Radial \elocity at a distance of 5.5 from the sourc.

www.manharaa.com



205

15.00
Present Study
10.00 -
Ramshaw et al.
w
E 5.00 - === Measured data
£
2
S |
< -5.00 - y
GJ 3
>
©
5 -10.00 -
o]
x
-15.00
0.0 0.2 0.4 0.6 0.8

Time (s)

Figure 7.11Radial velocity at a distance of 16.5 m from therse.

www.manharaa.com




206

7.4.2 Pile Driving Problem of Mabsout et al.

This problem involves finite element analysis opr@-bored pile based on the
work of from the work of Mabsout et al (1995). Thpie is considered as close-end,
round, and concrete with a canonical tip. It igvelm through undrained, nearly
incompressible, normally consolidated clayey sadihe pile is 20 m in length and 0.25 m
in diameter. The pre-bored pile is installed abgimtion depth of 18 m. The finite
element method is used to discretize the piletateraction problem. The mesh consists
of four-node axisymmetric bilinear displacementnedats with reduced integration
(CAX4R) for modeling the pile, and 4-node axisymneebilinear displacement/pore-
pressure elements with reduced integration (CAX4RP)nodeling the soil. The finite
element mesh is shown in Figure 7.10. The tiphef pile is designed as a parabolic
shape with the radius to tip height ratio of %.eThodulus of elasticity of the concrete
pile is E, = 24.8x 10kPa with a Poisson’s ratio ®0.2. The density of the concrete is
0, =2400 kg/mi. The soil parameters are chosen to representatigriconsolidated
clay. The modulus of elasticity of the clayfs =1060(Z) kPawhere Z is the depth in
meters. The Poisson’s ratiows0.2. The dry density of the clayp§21595kg/m3. The
soil and pile parameters are listed on Table 7.2raing function representing a single
hammer blow is applied on top of the pile. Figdrgél shows the force function applied
on the pile head with time.

The boundary conditions consist of restricting therizontal and vertical
movements at the base of the mesh and horizontaemments at the right side of the
mesh. An analytical rigid surface is defined 1 ramay from the axis of symmetry to
avoid over constraints on the soil elements aldrggaxis of symmetry. The soil-pile
interface is modeled using the master-slave algworit The initial void ratio is defined as
& = 0.63 for all nodes. The initial stresses definedthis problem are the initial pore
pressurep, and the initial effective stresses,. The variation of pore pressure and

initial effective stress are shown in Figure 7.12.
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Figure 7.17 shows the displacement at the pile lieaichg a period of 0.10 s.
The displacement at the pile top computed as 40 winth is consistent with the
published data (Mabsout, et al., 1995). The vianabf vertical velocity at the pile top is
shown in Figure 7.18. The peak velocity is caltedaas 1900 mm/s. The published data
presented a velocity of around 1800 mm/s. The history of acceleration at the pile top
is shown in Figure 7.19. The peak acceleratiotalsulated as 600 x i@nm/$. The
published data showed a peak acceleration of ar60Adx 16 mm/<. The patterns of
the velocity and acceleration graphs are foundeadnsistent with the present work.
This numerical application enabled to validate pgreposed nonlinear finite element
model, which leads to study ground vibrations wvathigher level of confidence in the

next sections.
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Table 7.3 Material properties of the clay and the p

Material Parameters Notation Value Units
Normally consolidated clay

Modulus of elasticity E 1.07x162 kN/nf
Poisson’s ratio v 0.30 -

Dry Density Pdry 1600 kg/mq’
Undrained cohesion Cu 2877 KN/nf
Angle of internal friction @ 6 0
Coefficient of friction u 0.10 0

Pile

Modulus of elasticity E 24.8x16 kN/nf
Poisson’s ratio v 0.20 -

Dry Density Pdry 2400 kg/mq’
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Figure 7.14 The forcing function applied on theegikad.
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Figure 7.15 The effective stress and pore pressigtebution in soil at initial state.
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7.5 Analysis of Ground Vibrations in Soils

The amplitudes of ground vibrations during pilevarg are dependent on the soill
and source (pile and hammer) parameters. Moreafgadly,(1) the soil type, (2) the pile
embedment length and (3) the released hammer emengy significant effects on the
transmission of ground vibrations in the soil. Bedection of these parameters is the key
to the success of a numerical model to predictratewand reliable vibration records. In
this section, the characteristics of the groundatibns are discussed with numerical
applications. The effects of three parametergapéained in the following subsections.

The ground vibrations generated by pile driving amalyzed using the data in the
second numerical application (Section 7.4.1). ddwtour plot of the radial, vertical and
resultant velocities in the soil is shown in Figatd8. The contour plot for the radial
velocities shows spherical wave fronts that argioated from the pile toe. These waves
are characterized as P-waves. In the verticalciteds plot, it is noticed that cylindrical
wave fronts are transmitted along the pile shatiese types of waves are characterized
as S-waves. The surface waves are also showe icotitour plots.

Following results can be drawn from the finite edemresults shown by the
contour plots: (1) body waves dominate around iletpe and propagate on a spherical
wave front; (2) vertically polarized shear wavesndmate around the pile and propagate
in a radial path on a cylindrically wave front; a8 Rayleigh waves propagate on the

top surface less rapidly than the shear waves.
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7.5.1 Effect of Soil Properties

Five different soil types consisting of loose sadeinse sand, soft clay, medium
stiff clay and stiff clay are defined in the finkéement model to assess the effect of soll
strength on the ground vibrations. The dimensanpile parameters remain same as in
the second numerical example. The modulus ofieitysand the cohesion of the clays
defined as increasing with the depth of the sdihe material parameters for different
types of sands and clays are shown in Tables A4 &n respectively.

The peak particle velocities (PPVs) versus distdnma the pile are plotted for
different types of sands —loose and dense- and clagft, medium dense and stiff- as
shown in Figure 7.20. The loose sand has the ggeRPV with a magnitude of around
11.0 mm/s followed by the dense sand with a PP¥.@fmm/s. It can be monitored in
Figure 7.20 that the PPVs after 18 m are highesbfhclay, then medium stiff clay and
then the stiff clay. In soft clay, the maximum PRVmnonitored at a distance of 9 m from
the pile as 2.70 mm/s. In medium stiff clay, theaxitmum PPV is 2.26 mm/s at a
distance of 9 m from the pile. In stiff clay, th@ximum PPV is 2.73 mm/s at 9 m from
the pile.

The radial velocities are higher in the stiff clagmpared to the soft clay as
shown in Figure 7.21. Although, the stress wavagel faster in the stiff clay, vibrations
generated on the ground surface have the highgditades in the soft clay. The reason
is in the stiff clay the compression waves, P-waeesounter the ground surface within a
shorter period of time compared to the P-wavefiénsoft clay. This conclusion can be
drawn by analyzing the time history of the radialocities at 9 m from the pile for soft
and stiff clays as shown in Figures 7.22 and 7r@8pectively. In soft clay, the first two
peak points represent the shear wave, S-wave lirg\eom the shaft, and the third peak
point represents the P-wave. In stiff clay, thistfpeak point represents the S-wave, then

the P-wave, which is shown by the following peaknoencounter the surface.
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The contour plots of radial velocities at t=0.8®ssoft and stiff clays are shown
in Figure 7.24. The contour plots clearly show tivhile P-waves are on the surface in
the stiff clay, they are still traveling undergralin the soft clay. The S-waves encounter
the surface first in the soft clay, and then thed%e arrives.

The peak particle velocities are compared withetmpirical method of Wiss and
Jedele (Woods, et al., 1985). In Figure 7.25 pisak particle velocities at 4.5 m, 9 m, 18
m, 27 m, 36 m, 45 m and 54 m are plotted for deffeitypes of clays on a scaled distance
graph. The red line on the graph shows the enediapClass Il soils that are competent
soils as described in Chapter 2. Figure 7.25tithiss the ground vibrations below the
red envelope within first 18 m, which verifies thitey are within the safe limits.
However, after 18 m, ground vibrations particulanysoft clays considered troublesome

to some people.
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Table 7.4 Soil parameters for different types ofdsa

Material Parameters Notation Value Units
Loose sand

Modulus of elasticity E 12.0 x16 kN/nf
Poisson’s ratio v 0.25 -

Dry Density Pdry 1440 kg/mq’
Undrained cohesion Cu 0.0 KN/nf
Angle of internal friction @ 30 0
Dense sand

Modulus of elasticity E 26.0 x10 kN/nf
Poisson’s ratio v 0.40 -

Dry Density Pdry 1770 kg/mq’
Undrained cohesion Cu 0.0 KN/nf
Angle of internal friction @ 40 0
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Table 7.5 Soil parameters for different types aiysl

Material Parameters Notation Value Units
Soft clay

Modulus of elasticity E 1.06 x16Z(m) kN/nf
Poisson’s ratio v 0.30 -

Dry Density Pdry 1600 kg/mq’
Undrained cohesion Cu 2.87 Zfn) kN/nf
Angle of internal friction @ 6 0
Medium stiff clay

Modulus of elasticity E 2.0 x1GZ(m) kN/nf
Poisson’s ratio v 0.30 -

Dry Density Pdry 1600 kg/mq’
Undrained cohesion Cu 6.0 Z(Mm) kN/nf
Angle of internal friction @ 6 0

Stiff clay

Modulus of elasticity E 4.0 x10 Z(m) kN/nf
Poisson’s ratio v 0.30 -

Dry Density Pdry 1600 kg/mq’
Undrained cohesion Cu 12.0 Zfn) kN/nf
Angle of internal friction @ 6 0
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Figure 7.20 Peak particle velocity vs. distancedifierent types of soils.
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Figure 7.24 Contour plot of radial velocity at t88.s for (a) soft clay, and (b) stiff clay.
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7.5.2 Effect of Pile Embedment Length

Three different pile embedment lengths are consdiéor the simulation of pile
driving and propagation of ground vibrations. Eammulation has a different pile
embedment length consisting of: (1) one pile lengthrembedded, (2) half a pile length,
L/2, embedded and (3) quarter of a pile length, ebedded.

As shown in Figure 7.25, the shorter the embednsetite greater the PPVs are
on the ground surface. The maximum recorded PBWs$he fully, half, and quarterly
embedded piles are 10.5 mm/s, 6.5 mm/s, and 2.5spmegpectively. Although the
energy transmitted to the ground is the same fer tthree different models, the
dissipation of the stress waves due to the matel@hping in the ground causes
significant differences in the magnitudes of thbrations on the ground surface. Less
energy is dissipated in the ground as the pileslese embedded. When the pile is
guarter-embedded, the PPV at 4.5 m from the pilevistimes greater than the PPV at
the same point for the half-embedded pile. In aoldit when the pile is quarterly
embedded, the PPV at 4.5 m from the pile is fiuge8 greater than the PPV at the same
point for the fully embedded pile. This can belexped by the difference of the arrival
times of the P-waves to the ground surface. Thefes reach the ground surface in a
relatively shorter time than the quarterly and {emfbedded piles with respect to the
arrival time for the fully embedded pile. The cmunt plots of the resultant velocities are
shown in Figure 7.26.

The PPVs for the three cases are plot on the sitsti@nce graph of Woods and
Jedele (1985) as shown in Figure 7.27. The PPWbkdlh and quarterly embedded piles
at 18 m and 27 m are found to be troublesome teoperwhereas the PPVs for fully

embedded piles are found to be barely noticeabpetsons.
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Figure 7.26 Peak particle velocity vs. scaled distafrom the pile for different pile
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7.5.3 Effect of Released Hammer Energy

The hammer energies transmitted from the hamménrg@ile are compared for
three different models. The original forcing funatthat is shown in Figure 7.13 is used
for the analysis. Hammer energies are represdiyjelde peck forces applied on the pile
head as F, 3F and 5F. These peak forces are aigduhs 2,000 kN, 6,000 kN and
10,000 kN, respectively. The maximum PPVs are agegpas 2.0 mm/s, 4.0 mm/s and
7.0 mm/s for peak impact forces of F, 3F and 5&peetively, as shown in Figure 7.28.
The radial (y), vertical () and resultantom) velocities are plotted for 3F and 5F cases
as shown in Figures 7.29 and 7.30, respectively.Figure 7.29, the radial velocities
increase up to 9 m then gradually decreases tothardar field. The reason for that is
the shear waves dominate in the first 9.0 metérgtigure 7.30, both radial and vertical
velocities gradually decrease in the near andiédd.fThis is because the compression
waves dominate on the ground surface. The comeiusan be drawn that the more
energy transmitted to the ground the higher the$&¥ on the ground surface.

The results are compared with the empirical metbfod/oods and Jedele (1985)
as shown in Figure 7.31. The PPVs for 3F and BFarnd to be troublesome to persons

after a distance of 27 m from the pile.
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Figure 7.29 Peak particle velocity vs. distancediffierent hammer energies.
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Figure 7.31 Peak particle velocity vs. distancetlier peak force of 10,000 kN.
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7.6 Ground Vibrations at Foundation Levels

Structural damage caused by pile driving inducdmtations are not only caused
by stress waves traveling on the ground surfacealsat caused by the waves below the
ground surface. If there are substructures suculaways, pipelines or deep foundations
in the near vicinity of a pile driving operationardage to those substructures can be
caused by underground waves. Thus, the damagei@nitbased on the measurements of
the peak particle velocities recorded on the graurthce would be less beneficial.

The radial, vertical and vector sum velocitiesha ground surface (Z=0.0) and
below the ground surface (Z=4.5 m, Z=9.0 m, Z=18 are computed for varying
distances from the center of the pile as shownigares 7.32, 7.33, and 7.34. It can be
seen in the figures that the vertical peak velesiare up to 4 times higher than the radial
peak velocities on the ground surface. Thus, cadrtvelocities dominate in the entire
field. In Figure 7.34, the resultant peak partiddocities (PPVs) are shown for different
depths and distances from the pile. At 18 m bdlmwground, the PPVs are 10 times, 7.5
times and 3.5 times greater than the PPVs on thengrsurface at 2.5 m, 4.5 mand 9 m
away from the pile, respectively. This is becatiieenergy transmitted from the pile toe
into the ground dissipates when traveling to theugd surface. Thus, the PPVs have a
greater magnitude at the depth of the pile toe.

In Figure 7.35, it is shown that the PPVs are betw® mm/s and 20 mm/s at the
depth of the pile toe within 18 m distance from fhke. Hence, the measurement of
ground vibrations would be pointless if there ang aubstructures at the depth of 18 m
below the ground surface. The substructures cbelddversely affected by the pile

driving vibrations from the ground surface to attheqf 18 m.
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Figure 7.34 Peak vertical velocity vs. distancerfrihe pile at different depths.

www.manharaa.com




235

- 25.0
“Q
e =0=7=0.0m
20.0 -
E 0.0 —8-7Z=45m
>
= el 7 =0,
S 15.0 - £=9.0m
o =>¢=7=18.0 m
>
= 10.0 -
S
2
@ 5.0 -
@
©
q’ 0.0 T T T 1
a 0 9 18 27 36
Distance from the pile (m)
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7.7 Summary and Discussion

This chapter consists of a parametric study onfitnge element modeling of
ground vibrations caused by impact pile drivingheTparameters considered for the
assessment if ground vibrations are: (1) the smhgth, (2) the pile embedment length,
and (3) the released hammer energy. In additrengtound vibrations at various depths
and distances from pile driving are investigatediltostrate the effect of ground
vibrations to buried structures in the vicinityple driving.

The first parameter considered is the soil strengthe finite element analysis is
run for three different types of soils: (1) sofag| (2) medium stiff clay, and (3) stiff clay.
These solil types are represented by different gatieelastic modulus and unconfined
compressive strengths. The modules of elastictyvaried from 1.06 MPa to 4 MPa.
The unconfined compressive strengths are varieth {8087 KPa to 12 KPa. The
variation of the peak particle velocities (PPVs)tba ground surface is monitored. The
following conclusions are drawn from the analygd3:the PPVs are higher in stiff clay
in the near field, which is 9 m or less away frdra pile; (2) the PPVs are higher in soft
clay in the far field, which is more than 9 m awlaym the pile; (3) the shear waves
dominate in the soft clay whereas the primary wa@sinate in the stiff clay.

The next parameter studied is the pile embedmepthdelhe analysis is
performed for three cases consisting of fully, hatid quarterly embedded piles. The
peak particle velocities at different distancesfrthe pile on the ground surface are
plotted. The quarterly embedded pile yields greateration amplitudes with respect to
the half and fully embedded piles. Although thelaga energy from the pile hammer
remains constant, the magnitude stress waves eterounthe ground surface are greater
for the less embedded piles.

In the last case, the effect of hammer energyudist for three cases. In these
cases, peak forces of 2,000 kN (F), 6,000 kN (3f) 20,000 kN (5F) are considered to

be applied on top of the pile. The time histonéthe peak particle velocities at different
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depths are plotted. It is concluded that increadgaimmer energy causes increase in the
peak particle velocities.

The ground vibrations at various depths are andlyaanvestigate the effect of
vibrations to the substructures in the vicinity tfe pile driving. The vibration
amplitudes are recorded at 4.5 m, 9 m, and 18 wmb#ie ground surface. It is shown
that the maximum PPV is monitored at a depth ainl®here the pile toe is located. The
PPVs between 0 to 18 m below the ground surfacgerdrom four to ten times the

magnitude with respect to the PPVs on the grounfacel
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CHAPTER 8
SUMMARY AND CONCLUSIONS

This thesis consists of static and dynamic analylsjsles using the finite element
method. For the analysis of soil-pile interactiangoupled displacement/pore pressure
element formulation was employed. The governingaéiqns were developed for the
transient analysis of soils under static and dyedoading conditions. These equations
are implemented within the finite element framewoding the Mathematica software.
The ABAQUS/Standard finite element package was ukedsolve the non-linear
axisymmetric static and dynamic equations. The 8@k assumed to be normally
consolidated. The undrained soil conditions wesseumed. The master-slave contact
algorithm in ABAQUS was used to model the inter@ctbetween the pile and soil. An
analytical rigid surface is defined along the axissymmetry to remove the additional
constraints on the soil elements adjacent to thesstry line to allow slippage of the soil
elements. In addition, a non-reflecting artificladbundary is defined to prevent the
bounce back of stress waves from the far end ofrtbdel. This boundary consisted of
soil elements with high damping ratios that aragiesd to absorb the vibrations.

Two types of problems were solved in this thesli3:tle static analysis of a pile
in which the phenomenon of static consolidation wasdied, and (2) the dynamic
analysis of a pile in which pile driving and grouwidbrations were studied. The results
were compared with published data to validate thraerical model.

In the static analysis, the load capacity of alsipge is investigated. The results
from the finite element method are compared witd ampported by widely recognized
theoretical methods. The theoretical methods @hatused to estimate the end bearing
capacities are as follows: (1) General FormulaM@3ic’'s Method, (3) Janbu’s Method,
(4) Meyerhof's Method, and (5) Coyle & Castello’'seMod. The estimation of skin

friction resistance, shaft capacity, of single pils performed using the (1) Alpha

www.manaraa.com



239

method, (2) Beta method, and (3) Lambda method. Twmerical applications are
carried out to estimate the load capacity of similes in normally consolidated clays.
The first numerical application consists of a sotigdindrical concrete pile with a
diameterD = 1.0 m and length= 20 m embedded in a thick homogenous stiff clggda

It is examined that the model with no slippagehat interface predicts almost twice as
much load capacity as the model with interface. rdgards with the end bearing
capacities, Coyle & Castello’s method is found &rbost conservative followed by the
finite element method, then Janbu’s method, thegdvteof's method, and finally Vesic’s
method. In respect to skin friction resistance, fihite element is found to be the most
conservative method, followed by Beta, then Lamiaohe then Alpha. It is concluded
that modeling the interaction between the soil ard (soil pile interface) is vital to
obtain accurate pile load capacities.

In the dynamic analysis, the amplitudes of grouiatations are investigated
based on the variation of: (1) the soil type, (2 pile embedment length and (3) the
released hammer energy, all of which have sigmficeffects on the transmission of
ground vibrations in the soill.

In the first analysis, five types of soils, loosedadense sands and, soft, medium
stiff, and stiff clays, are modeled. It is fouthét the vibration amplitudes are highest for
the loose sand with a PPV of 10.0 mm/s followedthy dense sand with a PPV of
around 4.0 mm/s. Among the clay types, the vibregtiare higher for the stiffer clay in
the near field, which is 9 m, half a pile lengthJess away from the pile. In the soft clay,
vibration amplitudes are higher in the far fieldhigh is more than 9 m away from the
pile. It is concluded that the shear waves doreinatthe softer clay whereas the
compression waves dominate in the stiff clay.

In the second analysis, three different embednendths, full, half, and quarter
pile lengths, are modeled. It is found that thartgrly embedded pile produces greater

vibration amplitudes with respect to the half amndlyf embedded piles. The greater
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amplitudes of vibrations are encountered on theumposurface for shorter pile
embedment lengths. This is due to less energypdissn in the ground during the
transmission of ground vibrations from the pile toehe ground surface.

In the third analysis, three different impact fa@re applied on top of the pile.
The peak forces are selected as 2,000 kN (F), &BD®BF) and 10,000 kN (5F). Itis
observed that although the increase in hammer grangses increase in the peak particle
velocities, these increments are not linearly propoal with the magnitude of the
applied impact force.

The effect of vibrations to the substructures iae gnoximity of the pile driving
was also investigated analyzing the ground vibratiat various depths. The vibration
amplitudes were recorded at 4.5 m, 9 m, and 18 lowbéhe ground surface. This
analysis showed that the maximum vibrations areitoed at a depth of 18 m where the
pile toe is located. The recorded vibrations fribra pile toe to the ground surface have
shown significant discrepancies with the variataindepths. The vibration amplitudes
recorded at the depth of the pile toe where terdigreater than the recorded vibration
on the ground surface. It is concluded that tachdamage to substructures, the ground
vibrations must be recorded at various depthsemptioximity of the pile driving.

In conclusion, this research was valuable for snglground vibrations caused
by pile driving. The quality of the finite elememtodel was significantly improved by
(1) taking into account the friction between piledasoil, (2) considering non-linear
behavior of soils, and (3) defining an artificiaundary that minimizes reflection of the
waves in the far field. Proper consideration cdsth factors would be beneficial for
developing a safe pile driving strategy to avoidteptial structural damage and
disturbance in the vicinity of pile driving.

Future work is reserved to develop and implemestiitable constitutive model
within the finite element framework to study thdtieenent of foundation soils in the

proximity of repetitive impact pile driving or viatory pile driving.
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